<小米开源框架MACE> 创建模型部署文件

文章内容翻译自 MACE 官方手册,记录本人阅读与开发过程,力求不失原意,但推荐阅读原文。
https://media.readthedocs.org/pdf/mace/latest/mace.pdf
Github地址:https://github.com/xiaomi/mace

声明:如有侵权,请联系作者删除

创建模型部署文件

部署 MACE 模型的第一步是创建一个 YAML 模型部署文件。

文件描述了模型的部署情况,每个文件会生成一个静态库(如果指定了多个ABI类型,则每一个均会生成对应的静态库)。部署文件可以包含一个或多个模型,例如,一个智能相机应用可能包含人脸识别、物体识别、语音识别模型,这些都可以定义在一个部署文件中。

范例

下面是一个 Android 演示程序的部署文件例子。

# The name of library
library_name: mobilenet
target_abis: [arm64-v8a]
embed_model_data: 1
# The build mode for model(s).
# 'code' stand for transfer model(s) into cpp code, 'proto' for model(s) in protobuf file(s).
build_type: code
linkshared: 0
# One yaml config file can contain multi models' config message.
models:
  mobilenet_v1: # model tag, which will be used in model loading and must be specific.
    platform: tensorflow
    # support local path, http:// and https://
    model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v1/mobilenet-v1-1.0.pb
    model_sha256_checksum: 71b10f540ece33c49a7b51f5d4095fc9bd78ce46ebf0300487b2ee23d71294e6
    subgraphs:
      - input_tensors: input
        input_shapes: 1,224,224,3
        output_tensors: MobilenetV1/Predictions/Reshape_1
        output_shapes: 1,1001
    runtime: cpu+gpu
    limit_opencl_kernel_time: 0
    nnlib_graph_mode: 0
    obfuscate: 0
    winograd: 0
  mobilenet_v2:
    platform: tensorflow
    model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v2/mobilenet-v2-1.0.pb
    model_sha256_checksum: 369f9a5f38f3c15b4311c1c84c032ce868da9f371b5f78c13d3ea3c537389bb4
    subgraphs:
      - input_tensors: input
        input_shapes: 1,224,224,3
        output_tensors: MobilenetV2/Predictions/Reshape_1
        output_shapes: 1,1001
    runtime: cpu+gpu
    limit_opencl_kernel_time: 0
    nnlib_graph_mode: 0
    obfuscate: 0
    winograd: 0

配置

library_name library name.
target_abis The target ABI to build, can be one or more of 'host', 'armeabi-v7a' or 'arm64-v8a'.
target_socs [optional] build for specified socs if you just want use the model for that socs.
embed_model_data Whether embedding model weights as the code, default to 0.
build_type model build type, can be ['proto', 'code']. 'proto' for converting model to ProtoBuf file and 'code' for converting model to c++ code.
linkshared [optional] Use dynamic linking for libmace library when setting to 1, or static linking when setting to 0, default to 0.
model_name model name. should be unique if there are multiple models. LIMIT: if build_type is code, model_name will used in c++ code so that model_name must fulfill c++ name specification.
platform The source framework, one of [tensorflow, caffe].
model_file_path The path of the model file, can be local or remote.
model_sha256_checksum The SHA256 checksum of the model file.
weight_file_path [optional] The path of the model weights file, used by Caffe model.
weight_sha256_checksum [optional] The SHA256 checksum of the weight file, used by Caffe model.
subgraphs subgraphs key. ** DO NOT EDIT **
input_tensors The input tensor names (tensorflow), top name of inputs' layer (caffe). one or more strings.
output_tensors The output tensor names (tensorflow), top name of outputs' layer (caffe). one or more strings.
input_shapes The shapes of the input tensors, in NHWC order.
output_shapes The shapes of the output tensors, in NHWC order.
input_ranges The numerical range of the input tensors, default [-1, 1]. It is only for test.
validation_inputs_data [optional] Specify Numpy validation inputs. When not provided, [-1, 1] random values will be used.
runtime The running device, one of [cpu, gpu, dsp, cpu_gpu]. cpu_gpu contains cpu and gpu model definition so you can run the model on both cpu and gpu.
data_type [optional] The data type used for specified runtime. [fp16_fp32, fp32_fp32] for gpu, default is fp16_fp32. [fp32] for cpu. [uint8] for dsp.
limit_opencl_kernel_time [optional] Whether splitting the OpenCL kernel within 1 ms to keep UI responsiveness, default to 0.
nnlib_graph_mode [optional] Control the DSP precision and performance, default to 0 usually works for most cases.
obfuscate [optional] Whether to obfuscate the model operator name, default to 0.
winograd [optional] Whether to enable Winograd convolution, will increase memory consumption.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,651评论 18 139
  • 1、通过CocoaPods安装项目名称项目信息 AFNetworking网络请求组件 FMDB本地数据库组件 SD...
    阳明先生_X自主阅读 15,979评论 3 119
  • # Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列...
    aimaile阅读 26,478评论 6 427
  • # Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列...
    小迈克阅读 2,984评论 1 3
  • 文/踏雪寻梅 当第一缕晨曦穿过山坡上的浓密的林子,希望的曙光穿透灰蒙蒙的山谷时,在山谷温暖的怀抱里,沉睡一夜的村庄...
    a694fde23415阅读 433评论 2 1