Core Image框架详细解析(七) —— 自动增强图像 Auto Enhancing Images

版本记录

版本号 时间
V1.0 2018.01.28

前言

Core Image是IOS5中新加入的一个框架,里面提供了强大高效的图像处理功能,用来对基于像素的图像进行操作与分析。还提供了很多强大的滤镜,可以实现你想要的效果,下面我们就一起解析一下这个框架。感兴趣的可以参考上面几篇。
1. Core Image框架详细解析(一) —— 基本概览
2. Core Image框架详细解析(二) —— Core Image滤波器参考
3. Core Image框架详细解析(三) —— 关于Core Image
4. Core Image框架详细解析(四) —— Processing Images处理图像(一)
5. Core Image框架详细解析(五) —— Processing Images处理图像(二)
6. Core Image框架详细解析(六) —— 图像中的面部识别Detecting Faces in an Image(一)

自动增强图像

Core Image的自动增强功能分析图像的直方图,人脸区域内容和元数据属性。 然后它返回一个CIFilter对象的数组,其输入参数已被设置为将改善分析图像的值。

iOS v5.0及更高版本和OS X v10.8及更高版本均提供自动增强功能。


Auto Enhancement Filters - 自动增强滤波器

Table 3-1显示了Core Image用于自动增强图像的过滤器。 这些过滤器可以解决照片中发现的一些最常见的问题。


Using Auto Enhancement Filters - 使用自动增强滤波器

自动增强API只有两个方法:autoAdjustmentFiltersautoAdjustmentFiltersWithOptions:,在大多数情况下,您会想要使用提供选项字典的方法。

你可以设置这些选项:

  • 图像的方向,这对于CIRedEyeCorrectionCIFaceBalance滤镜是非常重要的,这样Core Image就可以精确地找到人脸。
  • 是否只应用红眼矫正。 (将kCIImageAutoAdjustEnhance设置为false。)
  • 是否应用除红眼校正以外的所有滤镜。 (将kCIImageAutoAdjustRedEye设置为false。)

autoAdjustmentFiltersWithOptions:方法返回一个选项过滤器数组,然后您将链接在一起并应用于分析的图像,如Listing 3-1所示。 代码首先创建一个选项字典。 然后获取图像的方向并将其设置为keyCIDetectorImageOrientation的值。

// Listing 3-1  Getting auto enhancement filters and applying them to an image

NSDictionary *options = @{ CIDetectorImageOrientation :
                 [[image properties] valueForKey:kCGImagePropertyOrientation] };
NSArray *adjustments = [myImage autoAdjustmentFiltersWithOptions:options];
for (CIFilter *filter in adjustments) {
     [filter setValue:myImage forKey:kCIInputImageKey];
     myImage = filter.outputImage;
}

回想一下,输入参数值已经由Core Image设置,以产生最好的结果。

您不必马上应用自动调整过滤器。 您可以保存过滤器名称和参数值供以后使用。 保存它们可以使您的应用程序稍后执行增强功能,而无需再次分析图像。

后记

本篇已结束,后面更精彩~~~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容