Seurat包的打分函数AddModuleScore

在单细胞数据分析的过程中,Seurat包提供了一个为一个基因集打分的函数AddModuleScore(自定基因集),为基因集进行打分常见的富集分析软件GSVA,今天我们来看看Seurat这个函数的用法和意义。

library(Seurat)
?AddModuleScore

给出的解释说明是Calculate module scores for feature expression programs in single cells,也就是计算单个细胞在一个基因集的score值。
描述是这样的

Calculate the average expression levels of each program (cluster) on 
single cell level, subtracted by the aggregated expression of control 
feature sets. All analyzed features are binned based on averaged 
expression, and the control features are randomly selected from each bin.

看完这个解释,云里雾里,不知所云。
再来看看用法和参数:

Usage:

     AddModuleScore(
       object,
       features,
       pool = NULL,
       nbin = 24,
       ctrl = 100,
       k = FALSE,
       assay = NULL,
       name = "Cluster",
       seed = 1,
       search = FALSE,
       ...
     )
Arguments:

  object: Seurat object

features: Feature expression programs in list

    pool: List of features to check expression levels agains, defaults
          to ‘rownames(x = object)’

    nbin: Number of bins of aggregate expression levels for all
          analyzed features

    ctrl: Number of control features selected from the same bin per
          analyzed feature

       k: Use feature clusters returned from DoKMeans

   assay: Name of assay to use

    name: Name for the expression programs

    seed: Set a random seed. If NULL, seed is not set.
   search: Search for symbol synonyms for features in ‘features’ that
          don't match features in ‘object’? Searches the HGNC's gene
          names database; see ‘UpdateSymbolList’ for more details

     ...: Extra parameters passed to ‘UpdateSymbolList’

计算结果会返回一个数值,有正有负,今天我们的任务就是来参透这个函数,既然看解释不明白,那就只能看原函数了。

function (object, features, pool = NULL, nbin = 24, ctrl = 100, 
    k = FALSE, assay = NULL, name = "Cluster", seed = 1, search = FALSE, 
    ...) 
{
    if (!is.null(x = seed)) {
        set.seed(seed = seed)
    }
    assay.old <- DefaultAssay(object = object)
    assay <- assay %||% assay.old
    DefaultAssay(object = object) <- assay
    assay.data <- GetAssayData(object = object)
    features.old <- features
    if (k) {
        .NotYetUsed(arg = "k")
        features <- list()
        for (i in as.numeric(x = names(x = table(object@kmeans.obj[[1]]$cluster)))) {
            features[[i]] <- names(x = which(x = object@kmeans.obj[[1]]$cluster == 
                i))
        }
        cluster.length <- length(x = features)
    }
    else {
        if (is.null(x = features)) {
            stop("Missing input feature list")
        }
        features <- lapply(X = features, FUN = function(x) {
            missing.features <- setdiff(x = x, y = rownames(x = object))
            if (length(x = missing.features) > 0) {
                warning("The following features are not present in the object: ", 
                  paste(missing.features, collapse = ", "), ifelse(test = search, 
                    yes = ", attempting to find updated synonyms", 
                    no = ", not searching for symbol synonyms"), 
                  call. = FALSE, immediate. = TRUE)
                if (search) {
                  tryCatch(expr = {
                    updated.features <- UpdateSymbolList(symbols = missing.features, 
                      ...)
                    names(x = updated.features) <- missing.features
                    for (miss in names(x = updated.features)) {
                      index <- which(x == miss)
                      x[index] <- updated.features[miss]
                    }
                  }, error = function(...) {
                    warning("Could not reach HGNC's gene names database", 
                      call. = FALSE, immediate. = TRUE)
                  })
                  missing.features <- setdiff(x = x, y = rownames(x = object))
                  if (length(x = missing.features) > 0) {
                    warning("The following features are still not present in the object: ", 
                      paste(missing.features, collapse = ", "), 
                      call. = FALSE, immediate. = TRUE)
                  }
                }
            }
            return(intersect(x = x, y = rownames(x = object)))
        })
        cluster.length <- length(x = features)
    }
    if (!all(LengthCheck(values = features))) {
        warning(paste("Could not find enough features in the object from the following feature lists:", 
            paste(names(x = which(x = !LengthCheck(values = features)))), 
            "Attempting to match case..."))
        features <- lapply(X = features.old, FUN = CaseMatch, 
            match = rownames(x = object))
    }
    if (!all(LengthCheck(values = features))) {
        stop(paste("The following feature lists do not have enough features present in the object:", 
            paste(names(x = which(x = !LengthCheck(values = features)))), 
            "exiting..."))
    }
    pool <- pool %||% rownames(x = object)
    data.avg <- Matrix::rowMeans(x = assay.data[pool, ])
    data.avg <- data.avg[order(data.avg)]
    data.cut <- cut_number(x = data.avg + rnorm(n = length(data.avg))/1e+30, 
        n = nbin, labels = FALSE, right = FALSE)
    names(x = data.cut) <- names(x = data.avg)
    ctrl.use <- vector(mode = "list", length = cluster.length)
    for (i in 1:cluster.length) {
        features.use <- features[[i]]
        for (j in 1:length(x = features.use)) {
            ctrl.use[[i]] <- c(ctrl.use[[i]], names(x = sample(x = data.cut[which(x = data.cut == 
                data.cut[features.use[j]])], size = ctrl, replace = FALSE)))
        }
    }
    ctrl.use <- lapply(X = ctrl.use, FUN = unique)
    ctrl.scores <- matrix(data = numeric(length = 1L), nrow = length(x = ctrl.use), 
        ncol = ncol(x = object))
    for (i in 1:length(ctrl.use)) {
        features.use <- ctrl.use[[i]]
        ctrl.scores[i, ] <- Matrix::colMeans(x = assay.data[features.use, 
            ])
    }
    features.scores <- matrix(data = numeric(length = 1L), nrow = cluster.length, 
        ncol = ncol(x = object))
    for (i in 1:cluster.length) {
        features.use <- features[[i]]
        data.use <- assay.data[features.use, , drop = FALSE]
        features.scores[i, ] <- Matrix::colMeans(x = data.use)
    }
    features.scores.use <- features.scores - ctrl.scores
    rownames(x = features.scores.use) <- paste0(name, 1:cluster.length)
    features.scores.use <- as.data.frame(x = t(x = features.scores.use))
    rownames(x = features.scores.use) <- colnames(x = object)
    object[[colnames(x = features.scores.use)]] <- features.scores.use
    CheckGC()
    DefaultAssay(object = object) <- assay.old
    return(object)
}

我们来一步一步解析这个函数
我们先用它的默认值

library(Seurat)
load(Rdata)
assay.old <- DefaultAssay(object = object)  ###结果为RNA
assay <- assay %||% assay.old   ### %||%的用法可自行查询,这里还是显示RNA
DefaultAssay(object = object) <- assay 
assay.data <- GetAssayData(object = object)
features.old <- features  ## 运行到这里,得到矩阵信息assay.data和gene list。
###这里我们慢慢运行
cluster.length <- length(x = features)
missing.features <- setdiff(x = features, y = rownames(x = object))  ##setdiff函数的用法 我们这里显然是不会有不同的。
###接下来我们就可以直接跳到
pool <- pool %||% rownames(x = object)
data.avg <- Matrix::rowMeans(x = assay.data[pool, ])
data.avg <- data.avg[order(data.avg)]    ###排序,从小到大
data.cut <- cut_number(x = data.avg + rnorm(n = length(data.avg))/1e+30, 
n = nbin, labels = FALSE, right = FALSE)
###rnorm(n, mean = 0, sd = 1) n 为产生随机值个数(长度),mean 是平均数, sd 是标准差 ,也就是说这里将数据切成了nbin份(由小到大)。
names(x = data.cut) <- names(x = data.avg)
ctrl.use <- vector(mode = "list", length = cluster.length)  ##空的列表
 for (i in 1:cluster.length) {
        features.use <- features[[i]]
        for (j in 1:length(x = features.use)) {
            ctrl.use[[i]] <- c(ctrl.use[[i]], names(x = sample(x = data.cut[which(x = data.cut == 
                data.cut[features.use[j]])], size = ctrl, replace = FALSE)))
        }
    }
ctrl.use <- lapply(X = ctrl.use, FUN = unique)
ctrl.scores <- matrix(data = numeric(length = 1L), nrow = length(x = ctrl.use), 
        ncol = ncol(x = object))   ####空的
for (i in 1:length(ctrl.use)) {
        features.use <- ctrl.use[[i]]
        ctrl.scores[i, ] <- Matrix::colMeans(x = assay.data[features.use, 
            ])
    }       #######细胞的平均值
features.scores.use <- features.scores - ctrl.scores
    rownames(x = features.scores.use) <- paste0(name, 1:cluster.length)
    features.scores.use <- as.data.frame(x = t(x = features.scores.use))
    rownames(x = features.scores.use) <- colnames(x = object)
    object[[colnames(x = features.scores.use)]] <- features.scores.use
    CheckGC()
    DefaultAssay(object = object) <- assay.old

走到这里,相信大家应该都明白了,也就是我们感兴趣的基因,抽出来,每一个细胞算一个这些基因表达的平均值,
背景基因的平均值在于找每个基因的所在的bin,在该bin内随机抽取相应的ctrl个基因作为背景,最后所有的目标基因算一个平均值,所有的背景基因算一个平均值,两者相减就是该gene set 的score值。
至于生物学意义,仁者见仁智者见智了。

©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351