Prometheus 简介 搭建监控系统一(基础篇)

Prometheus是最初在SoundCloud上构建的开源系统监视和警报工具包 。自2012年成立以来,许多公司和组织都采用了Prometheus,该项目拥有非常活跃的开发人员和用户社区。现在,它是一个独立的开源项目,并且独立于任何公司进行维护。为了强调这一点并阐明项目的治理结构,Prometheus 于2016年加入了 Cloud Native Computing Foundation,这是继Kubernetes之后的第二个托管项目。

下面说一下这个开源软件的安装实践过程,目标如下:

  • 安装 go 语言环境
  • 在监控服务器上安装prometheus
  • 在被监控环境上安装export
  • 安装grafana
  • 配置报警规则

Prometheus简介

简述

特点

  • 一个多维数据模型,其中包含通过度量标准名称和键/值对标识的时间序列数据
  • PromQL,一种灵活的查询语言 ,可利用此维度
  • 不依赖分布式存储;单服务器节点是自治的
  • 时间序列收集通过HTTP上的拉模型进行
  • 通过中间网关支持推送时间序列
  • 通过服务发现或静态配置发现目标
  • 多种图形和仪表板支持模式

Prometheus的优点

  • 相对其他而言有更强大的查询语言,警报和通知功能
  • 图形和报警的可用性和正常运行时间更高
  • 不依赖分布式存储,单服务器节点是自治的

Prometheus与Zabbix的区别

  • Zabbix:成熟度高,上手更快,但更好的集成导致灵活性较差,监控数据的复杂度增加后,Zabbix做进一步定制难度很高,即使做好了定制,也没法利用之前收集到的数据了
  • Prometheus:基本上正相反,上手难度大,但由于定制灵活度高,数据也有更多的聚合可能,起步后的使用难度小于zabbix

prometheus的基本概念

  • Prometheus支持多个api实例编码相同的数据,多重图形和仪表板模式
  • Prometheus在每个时间序列中创建一个本地文件,但允许在出现刮擦或者规则评估时以任意间隔存储样本。由于仅附加了新样本,因此数据可以任意保留,它更适用于许多短暂的,经常变化的时间序列集
  • Prometheus提供了一种更强大的图形和警报查询语言,Prometheus Alertmanager还提供了分组,重复数据删除和静音功能
  • Prometheus仅支持float64数据类型,但对字符串和毫秒分辨率时间戳的支持有限
  • Prometheus运行简单,但在有些时候需要根据产品,服务,数据中心或类似方面的可伸缩性边界明确的分片服务器,还支持并行冗余运行

时序4种类型

Prometheus 时序数据分为 Counter, Gauge, Histogram, Summary 四种类型。

  • Counter:表示收集的数据是按照某个趋势(增加/减少)一直变化的,我们往往用它记录服务请求总量,错误总数等。例如 Prometheus server 中 http_requests_total, 表示 Prometheus 处理的 http 请求总数,我们可以使用data, 很容易得到任意区间数据的增量
  • Gauge:表示搜集的数据是一个瞬时的,与时间没有关系,可以任意变高变低,往往可以用来记录内存使用率、磁盘使用率等。
  • Histogram:Histogram 由 <basename>_bucket{le="<upper inclusive bound>"},<basename>_bucket{le="+Inf"}, <basename>_sum,<basename>_count 组成,主要用于表示一段时间范围内对数据进行采样,(通常是请求持续时间或响应大小),并能够对其指定区间以及总数进行统计,通常我们用它计算分位数的直方图。
  • Summary:Summary 和 Histogram 类似,由 <basename>{quantile="<φ>"},<basename>_sum,<basename>_count组成,主要用于表示一段时间内数据采样结果,(通常是请求持续时间或响应大小),它直接存储了 quantile 数据,而不是根据统计区间计算出来的。区别在于:
a. 都包含 <basename>_sum,<basename>_count。
b. Histogram 需要通过 <basename>_bucket 计算 quantile, 而 Summary 直接存储了 quantile 的值。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容