MySQL索引原理

在互联网行业,常用的关系型数据库是MySQL,所以在招聘过程中,面试官一般都会问些关于MySQL的问题,比如MySQL的优化、MySQL的事物特性、隔离级别,以及MySQL索引相关的原理。下面我们就来聊一下MySQL索引相关的内容。

一、索引的数据结构

我们在线上遇到慢查询的情况,一般第一个想到的优化方式就是给where语句后的字段加索引,虽然效果是立竿见影的,但这通常是懒人做法。一方面是因为索引并不是都会生效,可能出现加了索引,查询依旧慢的问题,另一方面,索引会占用磁盘空间。

但是,这并不妨碍我们在遇到慢查询的时候,第一个想到的解决方案就是加索引,那么,为什么加了索引之后,就能优化慢查询,提升查询速度?

其实,索引就是一种优化查询的数据结构,MySQL中的索引就是用B+树实现的。那么为什么MySQL会选择B+树作为索引的实现数据结构呢?它和哈希表、完全平衡二叉树、B树有什么不同?

假设,我们现在有下面的user表:

user

① 哈希表

我们知道,hashMap(1.7)底层就是通过哈希表来实现的,即,数组+链表的方式。
哈希表的缺点有两个: 一、hash冲突,二、只支持精确查询,不支持范围查询,如果我们要某个年龄大于18的用户,如下:

select * from user where name = '关羽'; // 精确查找
select * from user where name > '关羽'; // 范围查找

这种情况哈希表并不能实现,所以,哈希表不适合做MySQL的索引数据结构。

②完全平衡二叉树

平衡二叉树的每个节点都包含下面四部分信息:

  1. 左指针,指向左子树
  2. 键值
  3. 键值所对应的数据存储地址
  4. 右指针,指向右子树

另外,二叉树是有序的,简而言之,就是左节点小于右节点,所以,平衡二叉树是支持范围查找的,但是,在精确查找的时候,会涉及到多次,比如,查刘备,需要查询三次才能找到,比哈希表的精确查找要慢。

③ B树

可以看到,B树在层级上比平衡二叉树要少一层,即少一次磁盘IO,原因在于,B树中的一个节点可以存储多个元素。

④ B+树

B+树的叶子节点和B树是一样的,只不过冗余了一分非叶子节点的数据

B+树比B树要胖一些,原因在于B+树中的非叶子节点会冗余一分在叶子节点中,并且叶子节点之间用指针相连。

综上,我们可以看出,有三种数据结构是适合做MySQL索引的数据结构的,平衡二叉树、B树、B+树。这三种数据结构都支持精确查找和范围查找,那么为什么MySQL却选中了B+树作为索引的数据结构呢?

其实,索引也是存储元素的,当我们的一个表中的数据越来越多时,对应的索引文件也会越来越大,这样就不能把全部的索引文件放在内存,不得不将索引文件存储在磁盘上,那么选用哪种数据结构,能够提高磁盘的IO效率,就成了参考项。

如果使用完全平衡二叉树来查询“张飞”,则需要四次IO,而使用B树的话,只要三次就可以了,提升了磁盘IO效率,而B+树和B树的非叶子节点是一样的,只不过是叶子节点冗余了一份非叶子节点的数据。所以,在精确查找上,B树和B+树是一样的,而B+树在范围查找上优于B树。

二、 B+树的节点到底多大合适

B+树的一个节点为一页或者一页的整数倍最为合适,因为读取这个节点的时候,是按照一页来读取的,大于或小于一页,会造成资源浪费。
在MySQL的Innodb引擎中,一页的默认大小是16K(如果操作系统的一页大小是4K,那么Mysql中一页=操作系统中4页),可以使用如下命令查看:

show global status like 'Innodbpagesize';
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容