机器学习_统计模型之(二)贝叶斯网络

1. 贝叶斯网络

 贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型。它用网络结构代表领域的基本因果知识。
 贝叶斯网络中的节点表示命题(或随机变量),认为有依赖关系(或非条件独立)的命题用箭头来连接。
 令G = (I,E)表示一个有向无环图(DAG),其中I代表图形中所有的节点的集合,而E代表有向连接线段的集合,且令X = (Xi), i ∈ I为其有向无环图中的某一节点i所代表的命题,则节点X的联合概率可以表示成:

 其中Pa(i)是i的父结点,是i的因。联合概率可由各自的局部条件概率分布相乘得出:
 p(x1,…,xk)=p(xk|x1,….,xk-1)…p(x2|x1)p(x1)
 这里顺便说一下朴素贝叶斯,由于其中各个变量x相互独立p(x2|x1)=p(x2),得出:
 p(x1,…,xk)=p(xk)…p(x2)p(x1)
 因此说朴素贝叶斯是贝叶斯网络的一种特殊情况。

2. 例程

(1) 功能

 eBay的Bayesian-belief-networks是一个贝叶斯网络的python工具包,此例为使用该库解决蒙提霍尔三门问题。

(2) 问题描述

 蒙提霍尔是概率中的经典问题,出自美国的电视游戏节目。问题的名字来自该节目的主持人蒙提•霍尔(Monty Hall)。参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊(主持人不会打开有车的那扇门)。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的机率?答案是:不换门的话,赢得汽车的几率是1/3。换门的话,赢得汽车的几率是2/3。
 这是为什么呢?接着往下看。

(3) 下载安装

$ git clone https://github.com/eBay/bayesian-belief-networks

(4) 代码

from bayesian.bbn import build_bbn

def f_prize_door(prize_door):
    return 0.33333333
def f_guest_door(guest_door):
    return 0.33333333
def f_monty_door(prize_door, guest_door, monty_door):
    if prize_door == guest_door:  # 参赛者猜对了
        if prize_door == monty_door:
            return 0     # Monty不会打开有车的那扇门,不可能发生
        else:
            return 0.5   # Monty会打开其它两扇门,二选一
    elif prize_door == monty_door:
        return 0         #  Monty不会打开有车的那扇门,不可能发生
    elif guest_door == monty_door:
        return 0         # 门已经由参赛者选定,不可能发生
    else:
        return 1    # Monty打开另一扇有羊的门

if __name__ == '__main__':
    g = build_bbn(
        f_prize_door,
        f_guest_door,
        f_monty_door,
        domains=dict(
            prize_door=['A', 'B', 'C'],
            guest_door=['A', 'B', 'C'],
            monty_door=['A', 'B', 'C']))

    g.q()
    g.q(guest_door='A')
g.q(guest_door='A', monty_door='B')

(5) 运行结果

(6) 分析

 程序中构建的贝叶斯网络如下图所示。

 先看看库是如何使用的,首先通过三个判别函数(节点对应的是判别函数,并不对应三个门)以及它们之间的依赖关系定义了网络g的结构,节点和连线关系是程序员根据业务逻辑定义的。而机器用来优化和计算在给定的条件下产生结果的概率。
 prize_door和guest_door都是随机的,所以概率都是0.333;而主持人知道哪扇门后是奖,所以monty_door由另外两个结点(父结点)决定的,当参赛者猜对时,Monty会打开另两门之一,没猜对时Monty只能打开另一扇有羊的门。
 从运行结果可以看到:先验是随机抽取的0.333,随着限制条件依次加入,不确定性逐渐变小,最终,参赛者如果选择换门(C)的赢率变为不换门(A)的两倍。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容