ggplot2优雅的自定义分面轴刻度

本节来解释如何使用ggh4x自带的facetted_pos_scales( )来自定义分面图形的轴刻度

加载R包

library(tidyverse)
library(ggh4x)

数据清洗

air_df <- airquality %>% 
  pivot_longer(cols = 1:4,names_to = "Env_vars",
               values_to = "Values")

绘制分面折线图

P <- ggplot(air_df, aes(x = Day,y = Values,color = as.factor(Month),group = Month)) + 
  geom_point() + geom_line() +
  labs(x = "Day of month", y = NULL) +
  scale_color_brewer(palette = "Set1", labels = c("May","June","July","August","September")) +
  facet_wrap(~Env_vars, nrow = 2, 
             scales = "free_y",strip.position = "left", 
             labeller = as_labeller(c(Temp = "Temperature (°F)", 
                                      Solar.R = "Solar radiace (lang)",
                                      Wind = "Wind (mph)",
                                      Ozone = "Ozone (ppb)"))) + 
  theme(strip.background = element_blank(),
        strip.placement = "outside",
        legend.position = "top",
        legend.title = element_blank())

P 

自定义轴刻度

P + facetted_pos_scales(
  y = list(Env_vars == "Ozone" ~ scale_y_continuous(limits=c(0,200),breaks=seq(0,200,40)),
           Env_vars == "Solar.R" ~ scale_y_continuous(limits=c(0, 350),breaks=seq(0,350,50)),
           Env_vars == "Temp" ~ scale_y_continuous(limits=c(40, 120),breaks=seq(40,120,20)),
           Env_vars == "Wind" ~ scale_y_continuous(limits=c(0,30),breaks=seq(0,30,5),
                                                   labels = letters[1:7])))

喜欢的小伙伴欢迎关注我的公众号

R语言数据分析指南,持续分享数据可视化的经典案例及一些生信知识,希望对大家有所帮助

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容

  • 写在前面 ggplot2 是一个功能强大且灵活的R包 ,由Hadley Wickham 编写,其用于生成优雅的图...
    Boer223阅读 28,061评论 0 67
  • 作者:严涛浙江大学作物遗传育种在读研究生(生物信息学方向)伪码农,R语言爱好者,爱开源 ggplot2学习笔记之图...
    wanghaihua888阅读 2,622评论 0 6
  • 简介 文章较长,点击直达我的博客,浏览效果更好。本文内容基本是来源于STHDA,这是一份十分详细的ggplot2使...
    taoyan阅读 51,106评论 7 159
  • ggplot2的主题系统可以让我们更好的控制图形非数据元素的细节,通过更加精细的修改来提升图像的美感,ggplot...
    R语言数据分析指南阅读 20,455评论 0 19
  • 自定义一个简单的折线图,足够展示万条数据,(千条以上数据在1070的屏幕宽度上 只会是一片茫茫,颜色会挤到一块儿。...
    Ability_f8a7阅读 1,258评论 0 0