想要分析OC中类的结构,我们可以通过clang命令得到底层的实现:
clang -rewrite-objc main.m -o main.cpp
然后在源码中我们可以看到Class的实现:
typedef struct objc_class *Class;
可以得出,Class真正类型时objc_class。
接下来我们就可以研究objc_class的结构了
struct objc_class : objc_object {
// Class ISA; // 8
Class superclass; // 8
cache_t cache; // 16 不是8 // formerly cache pointer and vtable
class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
class_rw_t *data() {
return bits.data();
}
//......其他的省略
}
objec_class继承自objc_object。OC中objc_object是一些对象的基类。ISA指针也是继承于objc_object。
OC中的NSObject其实和底层的objc_object是对应的。
我们可以看到有个bits有个data()函数,可以猜测类中的方法和属性可能存在于bits中。
然后我们开始探索bits中的内容:
首先,我们可以打印出类对象的地址,因为objc_class是struct,所以我们可以通过地址的平移得到属性bits。
属性占用内存情况:
ISA:8字节;
superclass:8字节;
cache_t的结构如下:
struct cache_t {
struct bucket_t *_buckets; // 8
mask_t _mask; // 4
mask_t _occupied; // 4
8+4+4=16
cache:16字节;
所以可以得出bits相对比objc_object首地址的偏移为32字节。
(lldb) x/4gx pClass
0x1000023b0: 0x001d800100002389 0x0000000100b37140
0x1000023c0: 0x00000001003da260 0x0000000000000000
(lldb) p 0x1000023d0 //首地址+32
(long) $2 = 4294976464
(lldb) p (class_data_bits_t *)0x1000023d0 //因为bits的类型是class_data_bits_t,这里需要强转一下
(class_data_bits_t *) $3 = 0x00000001000023d0
(lldb) p $3->data()
(class_rw_t *) $6 = 0x0000000100f39980
(lldb) p *$6
//这里我们得到了bits中data()的所有内容,通过探索,可以得出class的属性和方法列表都在ro中
(class_rw_t) $7 = {
flags = 2148139008
version = 0
ro = 0x0000000100002308
methods = {
list_array_tt<method_t, method_list_t> = {
= {
list = 0x0000000100002240
arrayAndFlag = 4294976064
}
}
}
properties = {
list_array_tt<property_t, property_list_t> = {
= {
list = 0x00000001000022f0
arrayAndFlag = 4294976240
}
}
}
protocols = {
list_array_tt<unsigned long, protocol_list_t> = {
= {
list = 0x0000000000000000
arrayAndFlag = 0
}
}
}
firstSubclass = nil
nextSiblingClass = NSUUID
demangledName = 0x0000000000000000
}
接下里我们打印ro
(lldb) p (class_ro_t *)$7.ro
(class_ro_t *) $11 = 0x0000000100002308
(lldb) p *$11
(class_ro_t) $12 = {
flags = 388
instanceStart = 8
instanceSize = 24
reserved = 0
ivarLayout = 0x0000000100001f89 "\x02"
name = 0x0000000100001f80 "LGPerson"
baseMethodList = 0x0000000100002240
baseProtocols = 0x0000000000000000
ivars = 0x00000001000022a8
weakIvarLayout = 0x0000000000000000
baseProperties = 0x00000001000022f0
}
可以看到ro中含有baseMethodList、baseProperties 、ivars等方法和属性的列表。
先来打印方法列表
(lldb) p $12.baseMethodList
(method_list_t *) $13 = 0x0000000100002240
(lldb) p *$13
(method_list_t) $14 = {
entsize_list_tt<method_t, method_list_t, 3> = {
entsizeAndFlags = 26
count = 4//存在4个方法
first = {
name = "sayHello"
types = 0x0000000100001f8b "v16@0:8"
imp = 0x0000000100001b90 (LGTest`-[LGPerson sayHello] at LGPerson.m:13)
}
}
}
(lldb) p $14.get(1)
(method_t) $15 = {
name = ".cxx_destruct"
types = 0x0000000100001f8b "v16@0:8"
imp = 0x0000000100001c60 (LGTest`-[LGPerson .cxx_destruct] at LGPerson.m:11)
}
(lldb) p $14.get(2)
(method_t) $16 = {
name = "nickName"
types = 0x0000000100001f93 "@16@0:8"
imp = 0x0000000100001bf0 (LGTest`-[LGPerson nickName] at LGPerson.h:17)
}
(lldb) p $14.get(3)
(method_t) $17 = {
name = "setNickName:"
types = 0x0000000100001f9b "v24@0:8@16"
imp = 0x0000000100001c20 (LGTest`-[LGPerson setNickName:] at LGPerson.h:17)
}
再来打印属性列表
(lldb) p $12.baseProperties
(property_list_t *) $18 = 0x00000001000022f0
(lldb) p *$18
(property_list_t) $19 = {
entsize_list_tt<property_t, property_list_t, 0> = {
entsizeAndFlags = 16
count = 1 //只有一个属性
first = (name = "nickName", attributes = "T@\"NSString\",C,N,V_nickName")
}
}
再来看成员变量
(lldb) p $12.ivars
(const ivar_list_t *) $20 = 0x00000001000022a8
(lldb) p *$20
(const ivar_list_t) $21 = {
entsize_list_tt<ivar_t, ivar_list_t, 0> = {
entsizeAndFlags = 32
count = 2
first = {
offset = 0x0000000100002378
name = 0x0000000100001e64 "hobby"
type = 0x0000000100001fa6 "@\"NSString\""
alignment_raw = 3
size = 8
}
}
}
(lldb) p $21.get(1)
(ivar_t) $22 = {
offset = 0x0000000100002380
name = 0x0000000100001e6a "_nickName"
type = 0x0000000100001fa6 "@\"NSString\""
alignment_raw = 3
size = 8
}
最后我们可以得出,类的常用属性的结构基本如下:
注意:实例方法存储在类的methodList, 而类方法存储在对应元类的methodList中。
相关面试题
问题:问下面的代码打印的结果是什么
BOOL re1 = [(id)[NSObject class] isKindOfClass:[NSObject class]];
BOOL re2 = [(id)[NSObject class] isMemberOfClass:[NSObject class]];
BOOL re3 = [(id)[LGPerson class] isKindOfClass:[LGPerson class]];
BOOL re4 = [(id)[LGPerson class] isMemberOfClass:[LGPerson class]];
NSLog(@" re1 :%hhd\n re2 :%hhd\n re3 :%hhd\n re4 :%hhd\n",re1,re2,re3,re4);
BOOL re5 = [(id)[NSObject alloc] isKindOfClass:[NSObject class]];
BOOL re6 = [(id)[NSObject alloc] isMemberOfClass:[NSObject class]];
BOOL re7 = [(id)[LGPerson alloc] isKindOfClass:[LGPerson class]];
BOOL re8 = [(id)[LGPerson alloc] isMemberOfClass:[LGPerson class]];
NSLog(@" re5 :%hhd\n re6 :%hhd\n re7 :%hhd\n re8 :%hhd\n",re5,re6,re7,re8);
正确的结果应该是:
re1: 1
re2: 0
re3: 0
re4: 0
re5: 1
re6: 1
re7: 1
re8: 1
re5、6、7、8很容易理解,是调用的对象方法。
下面我们分析一下re1:
[NSObject class] 调用类方法isKindOfClass,我们跟踪源码进去看看:
+ (BOOL)isKindOfClass:(Class)cls {
for (Class tcls = object_getClass((id)self); tcls; tcls = tcls->superclass) {
if (tcls == cls) return YES;
}
return NO;
}
此处的self是NSObject类对象,然后调用object_getClass((id)self)后得到的tcls为NSObject的元类,而此时传进来的cls为NSObject类,所以第一次循环的结果 tcls不等于cls。然后继续循环判断,去取tcls->superClass。因为NSObject的元类是根元类,根元类的父类是NSObject(注:此处考察的就是这个知识点)。所以tcls成为了NSObject,然后和cls对比,正好相等,返回YES。
那么为什么re2返回为NO呢?我们来看下isMemberOfClass:的源码:
+ (BOOL)isMemberOfClass:(Class)cls {
// 元类 VS 类
return object_getClass((id)self) == cls;
}
此时是直接将self(NSObject类)的元类和cls(NSObject类)进行对比,直接返回NO。
同样的方法可以分析re3和re4,都是返回NO。
最后补充一下OC对象isa和superClass的流程图:
问题:
LGPerson的定义如下:
请问下面代码打印的结果是什么?
LGPerson *person = [LGPerson alloc];
Class pClass = object_getClass(person);
const char *className = class_getName(pClass);
Class metaClass = objc_getMetaClass(className);
IMP imp1 = class_getClassMethod(pClass, @selector(sayHello));
IMP imp2 = class_getClassMethod(metaClass, @selector(sayHello));
IMP imp3 = class_getClassMethod(pClass, @selector(sayHappy));
IMP imp4 = class_getClassMethod(metaClass, @selector(sayHappy));
NSLog(@"%p-%p-%p-%p",imp1,imp2,imp3,imp4);
答案是:0x0-0x0-0x1000022a0-0x1000022a0
对于imp1和imp2我们都知道,sayHello是实例方案,所以获取到的都是空。而sayHappy是类方法,类方法是存在于元类中的实例方法,imp3理所当然是可以获取到的。但是imp4为什么也能获取到呢?下面我们可以跟踪class_getClassMethod:
源码进去看看:
Method class_getClassMethod(Class cls, SEL sel)
{
if (!cls || !sel) return nil;
return class_getInstanceMethod(cls->getMeta(), sel);
}
可以看出class_getClassMethod
方法是通过获取到元类,然后取元类中的实例方法就是类方法。然后我们跟踪getMeta
方法
Class getMeta() {
if (isMetaClass()) return (Class)this;
else return this->ISA();
}
到此可以明白了,因为我们传进来的是元类,然后直接返回自己。和传递进来类是一样的。