程序员的数学I

数序归纳法——如何征服无穷序列

高斯求和

  • 思考题——存钱罐里的钱
  1. 第1天,往存钱罐里投入1元,存钱罐总金额为1元
  2. 第2天,往存钱罐里投入2元,存钱罐总金额为3元
  3. 第3天,往存钱罐里投入3元,存钱罐总金额为6元
  4. 第4天,往存钱罐里投入4元,存钱罐总金额为10元
    每天如此存钱,问100天时,是多少存款?
  • 高斯求和的思路
    当然就是1+100,2+99, 3+98, ... 100+1,共有50个101
    101 * 50 = 5050

讨论一下高斯的方法,高斯求和的本质可以运用到很多场景,TA的本质是把累加器的算法,简化到只有三步即可完成:
比如1加到1亿,只需要一次加法和一次乘法,一次除法即可完成:((100000000+1) * 100000000) / 2

归纳

  • 0以上的整数断言
  1. 断言A(n): n * 2 是偶数
  2. 断言B(n): n * 3 是奇数
  • 可以用以下有关n的断言形式来表现高斯的观点

断言G(n): 0到n的整数之和为 n*(n+1)/2
但是如何证明0以上无穷多个整数都正确呢?必须引入“数学归纳法”

数学归纳法 是证明有关整数的断言对于0以上的所有整数n都成立
时所使用的方法
主要经过两个步骤进行证明:

  1. 证明P(0)成立
  2. 证明不论k为0以上的哪个整数,若P(k)成立,则P(k+1)也成立
    第一步,我们称作基底(base);第二步,称作归纳(induction)。

黑白棋思考题——错误的数学归纳法

  • 断言T(n):投掷n枚黑白棋,所有棋子的颜色一定相同。
  1. 基底的证明: T(1),当棋子只有1个的时候,T(1)成立。
  2. 除去1和k,k-1中共有两色棋子,不能成立k-1=0,所以不存在同属于两个组的棋子。
    因此,步骤二是无法得到证明的。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容

  • 递归——自己定义自己2 思考:和的定义 假设n为0以上的整数,使用递归的方式从0到n的整数之和。n=0时, S(n...
    锅巴GG阅读 896评论 0 1
  • 排列组合 I 解决计数问题的方法 计数——与整数的对应关系 计数就是计数对象和整数的对应起来的过程,注意两点:遗漏...
    锅巴GG阅读 357评论 0 0
  • 递归——自己定义自己 GNU是什么的缩写?“GNU is Not Unix”这里面的GNU又是什么的缩写?“GNU...
    锅巴GG阅读 721评论 0 1
  • 排列组合II 思考:从5张牌中任意取出3张进行排列(permutation),请问有多少种排列方法? 排列和置换相...
    锅巴GG阅读 299评论 0 0
  • 简书不支持LaTex... 余数 周期性和分组 思考:奇数和偶数 奇数是被2除余1的整数偶数是被2整除(余0)的...
    锅巴GG阅读 890评论 0 1