netty优化及面试题集锦

原作者 https://smartan123.github.io/book/?file=001-%E6%80%A7%E8%83%BD%E4%BC%98%E5%8C%96/001-%E6%80%A7%E8%83%BD%E4%BC%98%E5%8C%96%E9%9D%A2%E8%AF%95%E9%A2%98%E9%9B%86%E9%94%A6#%E4%B8%80%E3%80%81tomcat%E6%9C%89%E5%93%AA%E4%BA%9B%E9%85%8D%E7%BD%AE%E9%A1%B9%E5%8F%AF%E4%BB%A5%E4%BC%98%E5%8C%96%EF%BC%9F

怕丢失做cv拷贝整理

慕课网课程地址: https://coding.imooc.com/class/chapter/442.html#Anchor

请多多支持正版

一、请阐述Netty的执行流程。

1、创建ServerBootStrap实例

2、设置并绑定Reactor线程池:EventLoopGroup,EventLoop就是处理所有注册到本线程的Selector上面的Channel

3、设置并绑定服务端的channel

4、创建处理网络事件的ChannelPipeline和handler,网络时间以流的形式在其中流转,handler完成多数的功能定制:比如编解码 SSl安全认证

5、绑定并启动监听端口

6、当轮询到准备就绪的channel后,由Reactor线程:NioEventLoop执行pipline中的方法,最终调度并执行channelHandler

二、Netty高性能体现在哪些方面?

1、传输:IO模型在很大程度上决定了框架的性能,相比于bio,netty建议采用异步通信模式,因为nio一个线程可以并发处理N个客户端连接和读写操作,这从根本上解决了传统同步阻塞IO一连接一线程模型,架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。正如源码中所示,使用的是NioEventLoopGroup和NioSocketChannel来提升传输效率。

2、协议:采用什么样的通信协议,对系统的性能极其重要,netty默认提供了对Google Protobuf的支持,也可以通过扩展Netty的编解码接口,用户可以实现其它的高性能序列化框架。

3、线程:netty使用了Reactor线程模型,但Reactor细分模型的不同,对性能的影响也非常大,下面介绍常用的Reactor线程模型有三种,分别如下:

  • Reactor单线程模型:单线程模型的线程即作为NIO服务端接收客户端的TCP连接,又作为NIO客户端向服务端发起TCP连接,即读取通信对端的请求或者应答消息,又向通信对端发送消息请求或者应答消息。理论上一个线程可以独立处理所有IO相关的操作,但一个NIO线程同时处理成百上千的链路,性能上无法支撑,即便NIO线程的CPU负荷达到100%,也无法满足海量消息的编码、解码、读取和发送,又因为当NIO线程负载过重之后,处理速度将变慢,这会导致大量客户端连接超时,超时之后往往会进行重发,这更加重了NIO线程的负载,最终会导致大量消息积压和处理超时,NIO线程会成为系统的性能瓶颈。

  • Reactor多线程模型:有专门一个NIO线程用于监听服务端,接收客户端的TCP连接请求;网络IO操作(读写)由一个NIO线程池负责,线程池可以采用标准的JDK线程池实现。但百万客户端并发连接时,一个nio线程用来监听和接受明显不够,因此有了主从多线程模型。

  • 主从Reactor多线程模型:利用主从NIO线程模型,可以解决1个服务端监听线程无法有效处理所有客户端连接的性能不足问题,即把监听服务端,接收客户端的TCP连接请求分给一个线程池。因此,在代码中可以看到,我们在server端选择的就是这种方式,并且也推荐使用该线程模型。在启动类中创建不同的EventLoopGroup实例并通过适当的参数配置,就可以支持上述三种Reactor线程模型。

三、Netty的零拷贝体现在哪里,与操作系统上的有什么区别?

Zero-copy就是在操作数据时, 不需要将数据buffer从一个内存区域拷贝到另一个内存区域。 少了一次内存的拷贝,CPU的效率就得到的提升。在OS层面上的Zero-copy 通常指避免在 用户态(User-space)与内核态(Kernel-space)之间来回拷贝数据。Netty的Zero-copy完全是在用户态(Java 层面)的, 更多的偏向于优化数据操作。

  • Netty的接收和发送ByteBuffer采用DIRECT BUFFERS,使用堆外直接内存进行Socket读写,不需要进行字节缓冲区的二次拷贝。如果使用传统的堆内存(HEAP BUFFERS)进行Socket读写,JVM会将堆内存Buffer拷贝一份到直接内存中,然后才写入Socket中。相比于堆外直接内存,消息在发送过程中多了一次缓冲区的内存拷贝。

  • Netty提供了组合Buffer对象,可以聚合多个ByteBuffer对象,用户可以像操作一个Buffer那样方便的对组合Buffer进行操作,避免了传统通过内存拷贝的方式将几个小Buffer合并成一个大的Buffer。

  • Netty的文件传输采用了transferTo方法,它可以直接将文件缓冲区的数据发送到目标Channel,避免了传统通过循环write方式导致的内存拷贝问题。

四、原生的NIO存在Epoll bug、Netty是怎么解决的?

Java NIO Epoll会导致Selector空轮询,最终导致CPU100% 。

Netty对Selector的select 操作周期进行统计,每完成一次空的select操作进行一次计数,若在某个周期内连续发生 N次空轮询,则判断触发了Epoll死循环Bug 。

五、Netty自己实现的ByteBuf有什么优点?

1、它可以被用户自定义的缓冲区类型扩展

2、通过内置的符合缓冲区类型实现了透明的零拷贝

3、读和写使用了不同的索引

4、支持方法的链式调用

5、支持池化

六、Netty为什么要实现内存管理?

1、频繁分配、释放buffer时减少了GC压力。

2、在初始化新buffer时减少内存带宽消耗( 初始化时不可避免的要给buffer数组赋初始值 )。

3、及时的释放direct buffer。

七、TCP粘包/拆包的产生原因,应该这么解决?

TCP 是以流的方式来处理数据,所以会导致粘包/拆包 拆包:一个完整的包可能会被TCP拆分成多个包进行发送。 粘包:也可能把小的封装成一个大的数据包发送。

Netty中提供了多个Decoder解析类用于解决上述问题 FixedLengthFrameDecoder 、LengthFieldBasedFrameDecoder ,固定长度是消息头指定消息长度的一种形式,进行粘包拆包处理的。 LineBasedFrameDecoder 、DelimiterBasedFrameDecoder ,换行是于指定消息边界方式的一种形式,进行消息粘包拆包处理的。

八、netty业务handler中channelread方法造成内存泄漏的原因是什么?

如果业务handler继承的是ChannelInboundHandlerAdapter,那么在调用完channelRead方法之后,netty不会主动释放内存,必须进行手工释放。

九、netty并行执行优化策略有哪些?分别用在什么场景中?

1、使用netty提供的EventExecutorGroup线程组

如果客户端的并发连接数channel多,且每个客户端channel的业务请求阻塞不多,那么使用EventExecutorGroup

2、使用jdk提供的线程组ExecutorService

如果客户端并发连接数channel不多,但是客户端channel的业务请求阻塞较多(复杂业务处理和数据库处理),那么使用ExecutorService

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343