DL-Paper精读:Vision Transformer

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

https://openreview.net/pdf?id=YicbFdNTTy

background

Transformer已经成为了NLP领域的“the model of choice”, 主流做法(如BERT, GPT等)一般为在一个巨大的文本库上进行预训练,然后再在 一个较小的具体任务数据集上进行fine-tune。受益于Transformer 结构的计算效率及可扩展性,尽管目前模型及数据集尺寸不断增长,Transformer结构仍未到达性能上限。

limit

但它在CV领域的应用依然很受限,受其启发,有一些工作采用了例如self-attention等结构,与CNN相结合,或者在保持CNN架构的情况下取代某些组件,虽然也获得了一些精度上的提升,但这些特殊的attention结构,目前还无法在实际硬件部署中获得加速效果。因此在CV领域依然是ResNet类型的结构占据主流。

novel point

本文将图片进行切片,直接将patch序列输入到原始的Transformer中(Vision Transformer, ViT),在classification任务上取得了最优的结构,证明了CNN的结构并不是必须的。同时该工作还证明了ViT直接在ImageNet等数据集上进行训练效果不是太好,但经过在超大数据集(JFT-300M等)上进行预训练,再迁移到ImageNet等任务上时,可以获得极高的精度。

methodology

为了能直接使用NLP中对Transformer的一系列研究工作,本文所采用的模型结构,尽量贴近于原始的Transformer,如下所示:

输入:标准的Transformer采用的是1-D的序列,为处理2-D的图像信息,这里采用将图像切分的做法。首先将输入图像x\in R^{H\times W\times C}进行reshape到x\in R^{N\times \left ( P^{2}\cdot C \right )},其中P为分割的patch的尺寸,N为输入序列的长度。将patch的图像信息,位置信息及图像类别信息flatten到1-D作为输入,见公式1。若采用变体Hybrid Archetecture,结合CNN与Transformer,则将CNN输出的feature map代替此处的patch图像。

输出:与encoder的输出直接相连,在pre-training阶段采用一个一层的MLP,在fine-tuning阶段采用一个linear层.

Encoder: 详见上图左侧encoder部分。中间部分即为一个encoder,与原始的Transformer相同,由交替的Multiheaded self-attention(MSA)和MLP组成,每个block头尾还加入了LN和skip_connection,具体公式见2.3.

微调:ViT首先在超大数据集上预训练 ,然后迁移到下游的小数据集上进行微调。移除预训练的预测head,并添加了一个零初始化的 D × K 前馈层,其中 K 表示分类任务的类别。当下游任务图像分辨率不同时,选择固定patch尺寸不变。虽然这会导致更大的输入尺寸(ViT可以处理内存限制内任意尺寸的输入),但高分辨率的微调更有益处。但是此时预训练得到的position embeddings将失去意义,因此根据position embeddings在原始图像中的位置,进行2维插值。

evaluation(benchmark, experiments design)

文中对ViT,及其变体进行了验证,在多个数据集上均达到了超越目前SOTA的精度。同时在ImageNet上还证明了当模型尺寸较小时,hybrid变体比ViT精度更高,但随着模型增大,这种优势将逐渐消失。此外,还通过一个小实验证明了ViT在自监督学习任务上同样具有可观的未来。下图给出了在三个不同数据集上预训练后,在下游任务迁移的结果。

Thoughts:

1. Describe what the authors of the paper aim to accomplish, or perhaps did achieve.

将Transfomer用于CV领域

2. If a new approach/ technique/ method was introduced in a paper, what are the key elements of the newly proposed approach?

结构采用原始的Transformer,需要考虑的就是如何处理输入输出,如何将2-D的图像信息转换为1-D的序列信息传入Transformer结构中。本文采用简单的patch切分及position embedding,再进行flatten的方法,实现了这一目标。同时,可以思考的是,采用图像patch并进行位置embedding的方法,本质上类似于对图像不同位置的attetion,有利于图像内容的理解。

3. What content within the paper is useful to you?

这两年Transformer已经逐渐攻破了CV的一个又一个领域,但自己一直都未有具体的研究。以后,还需要对其在检测,超分,视频等领域的工作也一一进行学习。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容