语义召回模型-TwinBert

Microsoft在2020年提出了TwinBERT: Distilling Knowledge to Twin-Structured Compressed BERT Models for Large-Scale Retrieval这篇论文。今天有幸看了看,简单的跟大家分享下。

解决问题

论文主要解决的问题是:性能~ 性能~ 性能~~~

Online Server需要快速处理,尤其是在召回阶段,面对上亿级Doc,为此减少在线计算大势所趋。

架构原理

TwinBert就是在这种背景下应运而生的,如下图结构:


image.png

主要讲下上面这张图:

  • 整体:
  1. 两个对称的Bert, 左边的Bert用于Query建模,右边的Bert用于Title keyword建模(或者Doc Context keyword建模)。
  2. 两个Bert走完后,再各自经过一个Pooling Layer,池化层,听起来很高大上,其实很简单,主要是将序列中每个token的向量搞在一起,做成一个向量。 Query做成一个向量, keyword做成一个向量,以方便进行后面的Cross Layer的交互。 池化层有两个操作二选一,【用CLS】 或者 【所有tokens向量平均加权起来】,其中后者权重是学出来的。
  • 输入 : 均为Word Embeding + Position Embeding。 因为两边都是一句话,所以就没有了Segment Embeding了。
    值得提一下是,论文中是训练的英文的模型,所对输入进行了Word Hashing,具体说是使用了Tri-letter, 至于什么是Word Hashing ,见本人的另外一文章Word Hashing。

*Transformer Encoder
这里不多说,其中L用的是6层。

  • 池化层
    见整体部分,已说明。

*Cross Layer
Query做成一个向量q, keyword做成一个向量k,二者进行距离计算,有两种方式,一种是余弦相似度,如下图:


image.png

另一种是Residual network, 这里不多讲,有兴趣,自身翻阅。

如何训练?

蒸馏方法训练。

  • teacher model
    所以要搞一个teacher model,文章用的12层的 query和title关键词的训练的。二分类,分为相关和不相关。最后输出一个概率。

  • student model
    有了teacher model, 现在就开始teach学生把,将上面讲的Cross layer做的输出通过LR压缩到区间(0,1), 因为余弦的值域是[-1,1].

然后做一个做交叉熵 cross entropy。如下面公式:


image.png

优点

节省性能,Query在线用Bert预测, Doc提前离线算好刷到索引。在线只需要做一次Query Bert预测,以及与Doc的向量计算。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容