基于python商品评论数据采集与分析可视化系统 Flask框架 requests爬虫 NLP情感分析 毕业设计 源码下载

一、项目介绍

python商品评论数据采集与分析可视化系统

Flask框架、MySQL数据库、 requests爬虫、可抓取指定商品评论、Echarts可视化、评论多维度分析、NLP情感分析、LDA主题分析、Bayes评论分类

1、关于数据的说明:  小米手机京东旗舰店,爬取的评论数据

2、贝叶斯分类算法:准确率=93.49%

二、项目截图

三、补充说明

1、nlp情感分析

数值1表示正向评论,数值0表示负向评论

2、情感分析

  对人们对产品、服务、组织、个人、问题、事件、话题及其属性的观点、情 感、情绪、评价和态度的计算研究。文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类。它是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。

  本文将介绍情感分析中的情感极性(倾向)分析。所谓情感极性分析,指的是对文本进行褒义、贬义、中性的判断。在大多应用场景下,只分为两类。例如对于“喜爱”和“厌恶”这两个词,就属于不同的情感倾向。

·最常用于微博、微信、用户论坛等语境下的短文本分析

·大量的文本预处理技术需求[ 网页解析,文本抽取,正则表达式等 ]

·情感分析的特殊性

·文本长度相对较短

·语境比较独特

·需要提取的信息量较为特别(·否定词,歧义词可能导致明显误判·新词出现速度很快·分词很难做到尽善尽美)

# 1.基于词袋模型的分析

数据概况:

抓取自购物网站的正向、负向评论各约1万条。涵盖了数码、书籍、食品等多个领域。

基于词典进行情感分析     情感字典(sentiment dictionary)

·还行1 *不错2 ·不好-2太差了-3

·否定词的处理:前向搜索若干词条,以进行翻转

·情感得分的计算

·加载情感字典为Dict  

·遍历句子中的词条,将对应的分值相加

·分值之和作为该句的情感得分  

·所有句子的情感得分的平均值作为该文本的情感得分

基于词袋模型进行情感分析

·用金标准得到已准确分类的训练样本

·以词袋模型为基础,将情感分析完全看作是文本分类的一个简单实例来进行处理

·可按照分类进行预测,也可按照情感分值进行预测·需要对模型准确率和速度进行权衡

·效果较词典模型更好,但仍然忽略了上下文的关联信息

·可以考虑使用bigram或者trigram方式抽取词条,以同时考虑否定词和程度副词的影响

·可以考虑使用关键词进行模型拟合

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容