java数据结构之选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。

选择排序输出的是原序列的一个重排 <a1*,a2*,a3*,...,an*>;,使得 a1*<=a2*<=a3*<=...<=an*

排序算法有很多,包括插入排序冒泡排序堆排序归并排序,选择排序,计数排序基数排序桶排序快速排序等。插入排序,堆排序,选择排序,归并排序和快速排序,冒泡排序都是比较排序,它们通过对数组中的元素进行比较来实现排序,其他排序算法则是利用非比较的其他方法来获得有关输入数组的排序信息。

思想

n 个记录的文件的直接选择排序可经过 n-1 趟直接选择排序得到有序结果:

①初始状态:无序区为 R[1..n],有序区为空。

②第 1 趟排序

在无序区 R[1..n] 中选出关键字最小的记录 R[k],将它与无序区的第 1 个记录 R[1] 交换,使 R[1..1] 和 R[2..n] 分别变为记录个数增加 1 个的新有序区和记录个数减少 1 个的新无序区。

……

③第 i 趟排序

第 i 趟排序开始时,当前有序区和无序区分别为 R[1..i-1] 和 R(i..n)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第 1 个记录 R 交换,使 R[1..i] 和 R 分别变为记录个数增加 1 个的新有序区和记录个数减少 1 个的新无序区。 [1]

解释

对比数组中前一个元素跟后一个元素的大小,如果后面的元素比前面的元素小则用一个变量 k 来记住他的位置,接着第二次比较,前面 “后一个元素” 现变成了 “前一个元素”,继续跟他的“后一个元素” 进行比较如果后面的元素比他要小则用变量 k 记住它在数组中的位置(下标),等到循环结束的时候,我们应该找到了最小的那个数的下标了,然后进行判断,如果这个元素的下标不是第一个元素的下标,就让第一个元素跟他交换一下值,这样就找到整个数组中最小的数了。然后找到数组中第二小的数,让他跟数组中第二个元素交换一下值,以此类推。

算法性能

时间复杂度

选择排序的交换操作介于 0 和 (n - 1) 次之间。选择排序的比较操作为 n (n - 1) / 2 次之间。选择排序的赋值操作介于 0 和 3 (n - 1) 次之间。

比较次数 O(n^2),比较次数与关键字的初始状态无关,总的比较次数 N=(n-1)+(n-2)+...+1=n*(n-1)/2。交换次数 O(n),最好情况是,已经有序,交换 0 次;最坏情况交换 n-1 次,逆序交换 n/2 次。交换次数比冒泡排序少多了,由于交换所需 CPU 时间比比较所需的 CPU 时间多,n 值较小时,选择排序比冒泡排序快。 [1]

其他排序算法的复杂度如右图所示。

稳定性

选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第 n-1 个元素,第 n 个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果一个元素比当前元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列 5 8 5 2 9,我们知道第一遍选择第 1 个元素 5 会和 2 交换,那么原序列中两个 5 的相对前后顺序就被破坏了,所以选择排序是一个不稳定的排序算法。

java代码如下:

package 数据结构;

public class xuanzepaixu {

  public static void sort(long arr[]){

  long temp=0;//中间变量用来交换数据

  int k;//定义一个选择变量来进行选择

  for(int i=0;i<arr.length-1;i++){//循环

  k=i;//每次循环都将这一次i的值赋给k

  for(int j=i;j<arr.length;j++){//数据比较

  if(arr[k]>arr[j]){//效率比冒泡高,如果arr[k]后面的数据比它小,则交换数据

  temp=arr[j];

  arr[j]=arr[k];

  arr[k]=temp;

  }

  }

  arr[i]=arr[k];//通过选择k找到每一轮的最小值arr[k]赋给arr[i],即顺序已经排好

  }

  }

}

测试:

package 数据结构;

public class Testxuanzepaixu {

    public static void main(String args[]){

    long arr[]=new long[6];

    arr[0]=2;

    arr[1]=1;

    arr[2]=5;

    arr[3]=3;

    arr[4]=8;

    arr[5]=0;

    xuanzepaixu.sort(arr);

    for(int i=0;i<arr.length;i++){

    System.out.println(arr[i]);

    }

  }

    }

输出结果如下:


好啦,这次就到这里啦,有问题可以和我留言哦!

邮箱:2321591758@qq.com

其他博客的链接:

Github个人网站  知乎  简书

欢迎各位访问哦,这次就到这里啦!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容