Netty内存模型-PoolArena

1 原理

应用层的内存分配最终是委托给PoolArena实现。先看下PoolArena的内部数据结构:

image

poolArena提供了两种方式进行内存分配:

  • PoolSubpage用于分配小于8k的内存;

tinySubpagePools:用于分配小于512字节的内存,默认长度为32,因为内存分配最小为16,每次增加16,直到512,区间[16,512)一共有32个不同值;

smallSubpagePools:用于分配大于等于512字节的内存,默认长度为4;

tinySubpagePools和smallSubpagePools中的元素都是默认subpage。

  • poolChunkList用于分配大于8k的内存;

qInit:存储内存利用率0-25%的chunk

q000:存储内存利用率1-50%的chunk

q025:存储内存利用率25-75%的chunk

q050:存储内存利用率50-100%的chunk

q075:存储内存利用率75-100%的chunk

q100:存储内存利用率100%的chunk

各chunkList连接如下:

image

按照内存的使用率来取名的,如qInit代表一个chunk最开始分配后会进入它,随着其使用率增大会逐渐从q000到q100,而随着内存释放,使用率减小,它又会慢慢的从q100到q00,最终这个chunk上的所有内存释放后,整个chunk被回收。

接下来看下PoolArena如何进行内存分配,如下。

image
  • 如果是分配小内存,则尝试从tinySubpagePools或smallSubpagePools中分配内存,如果没有合适subpage,则采用方法allocateNormal分配内存。

  • 如果分配一个page以上的内存,直接采用方法allocateNormal分配内存。

默认都是先尝试从poolThreadCache中分配内存,PoolThreadCache利用ThreadLocal的特性,消除了多线程竞争,提高内存分配效率;首次分配时,poolThreadCache中并没有可用内存进行分配,当上一次分配的内存使用完并释放时,会将其加入到poolThreadCache中,提供该线程下次申请时使用。

内存池内存分配流程:

1、ByteBufAllocator 准备申请一块内存;

2、尝试从PoolThreadCache中获取可用内存,如果成功则完成此次分配,否则继续往下走,注意后面的内存分配都会加锁;

3、如果是小块(可配置该值)内存分配,则尝试从PoolArena中缓存的PoolSubpage中获取内存,如果成功则完成此次分配;

4、如果是普通大小的内存分配,则从PoolChunkList中查找可用PoolChunk并进行内存分配,如果没有可用的PoolChunk则创建一个并加入到PoolChunkList中,完成此次内存分配;

5、如果是大块(大于一个chunk的大小)内存分配,则直接分配内存而不用内存池的方式;

6、内存使用完成后进行释放,释放的时候首先判断是否和分配的时候是同一个线程,如果是则尝试将其放入PoolThreadCache,这块内存将会在下一次同一个线程申请内存时使用,即前面的步骤2;

7、如果不是同一个线程,则回收至chunk中,此时chunk中的内存使用率会发生变化,可能导致该chunk在不同的PoolChunkList中移动,或者整个chunk回收(chunk在q000上,且其分配的所有内存被释放);同时如果释放的是小块内存(与步骤3中描述的内存相同),会尝试将小块内存前置到PoolArena中,这里操作成功了,步骤3的操作中才可能成功。

allocateNormal实现如下:

image

第一次进行内存分配时,chunkList没有chunk可以分配内存,需通过方法newChunk新建一个chunk进行内存分配,并添加到qInit列表中。如果分配如512字节的小内存,除了创建chunk,还有创建subpage,PoolSubpage在初始化之后,会添加到smallSubpagePools中,其实并不是直接插入到数组,而是添加到head的next节点。下次再有分配512字节的需求时,直接从smallSubpagePools获取对应的subpage进行分配。

  • 这里为什么不是从较低的q000开始呢,我们知道一个chunk随着内存的不停释放,它本身会不停的往其所在的chunk list的prev list移动,直到其完全释放后被回收。 如果这里是从q000开始尝试分配,虽然分配的速度可能更快了(因为分配成功的几率更大),但一个chunk在使用率为25%以内时有更大几率再分配,也就是一个chunk被回收的几率大大降低了。这样就带来了一个问题,我们的应用在实际运行过程中会存在一个访问高峰期,这个时候内存的占用量会是平时的几倍,因此会多分配几倍的chunk出来,而等高峰期过去以后,由于chunk被回收的几率降低,内存回收的进度就会很慢(因为没被完全释放,所以无法回收),内存就存在很大的浪费。

  • 为什么是从q050开始尝试分配呢,q050是内存占用50%~100%的chunk,能够提高整个应用的内存使用率,因为这样大部分情况下会使用q050的内存,这样在内存使用不是很多的情况下一些利用率低(<50%)的chunk慢慢就会淘汰出去,最终被回收。

  • 为什么不是从qinit中开始呢,这里的chunk利用率低,但又不会被回收,会形成浪费

  • q075,q100由于使用率高,分配成功的几率也会更小,因此放到最后。如果整个list中都无法分配,则新建一个chunk,并将其加入到qinit中。

Refereneces

  1. https://www.jianshu.com/p/4856bd30dd56

  2. https://blog.csdn.net/youaremoon/article/details/50042373

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容