从另一种角度理解量子力学

本文来自麻省理工ECE教授Scott Aaronson教学讲义。和我们大多数人学的物理课不同,这门课是量子计算,从另外一个角度来理解量子力学。当时读到这篇文章觉得很有意思,便打算翻译过来和大家一起分享。由于本人学识浅薄,翻译中若有错误欢迎大家指正。另外这是课堂讲义,口语化的文字很难翻译,一些我觉得不重要的内容就略去不翻或者意译了。

量子力学的教学,有两种方法。第一种方法是如今大多数物理学家采用的,以历史发展的顺序,先从经典力学讲到电动力学,解一大堆微分方程,然后告诉你黑体辐射悖论和那些奇奇怪怪的实验结果,这些导致了物理学的危机。然后你会学习那些物理学家在1900和1926年之间提出来的各种复杂想法来解救这个危机。幸运的话,经过多年的学习你最终接触到这个中心概念:世界不是由概率(probabilities)描述的,而是由一些叫做振幅(amplitudes)的数字描述的。概率是非负的,而振幅可正可负,甚至可以是复数。

如今是量子信息时代,所有物理学家都用这种方法来学习量子力学的话就有点可笑。那些受过高等教育的人只不过记住了这些话:“光具有波粒二象性”,“薛定谔的猫不知是死是活除非你打开箱子瞧一瞧”,“你可以知道位置(position)或动量(momentum),但是不能两个都知道”,“一个粒子知道另一个粒子的自旋即使距离很远” 等等。但是我们根本不能理解这些,除非我们痛苦地学习好多年。

第二种教学方法抛弃了量子力学的历史发展过程,直接跳到其核心概念,也就是一个允许负号的概率理论。一旦你理解了这个理论,你就能品尝物理,就能计算任意原子的谱带。这个第二种方法就是我所采用的。


那么什么是量子力学?尽管是由物理学家发现的,量子力学和电磁学及广义相对论相比,并不是同一类的物理学。从科学的继承性来看,生物学来自化学,化学来自物理,物理来自数学,而量子力学位于物理和数学之间。量子力学就像是个操作系统,而其他物理理论就像是计算机应用程序(除了广义相对论没能兼容这个系统)。甚至可以用一个词来形容把一个物理理论安装到这个操作系统上:“量子化”。

如果量子力学不是关于一般的物理概念(物质,能量,波,粒子),那么它是关于什么的?在我看来,量子力学是关于信息概率观察 以及它们之间的联系的理论。

我的观点是,如果你研究概率论,那么最后肯定会触及量子力学。所以我们不如把概率这个概念扩大化,让概率也可以取负数。如果早这么做的话,19世纪的数学家就可以发明量子力学了,根本就不需要实验。

Scott: 在我看来,这说明了实验的重要性。很多时候我们做实验是因为我们不够聪明,必须通过分析实验结果来提出理论。
在这节课上,我将不做任何实验,来向你展示为什么当你希望这个宇宙有普遍的属性时,你必须从这三个中选:(1)确定性,(2)经典概率论,(3)量子力学。


小于0%的机率

什么是拥有负数概念的“概率论”? 我们从来没有听说过天气预报说明天有-20%的可能性下雨,这是有悖常理的。先不管这些,让我们抽象地想想一个事件,拥有N个可能的结果。我们可以将这个事件用一个向量来表示。这个向量由N个实数构成:

(P1,...., Pn)

数学上我们会如何描述这个向量? 我们会说,这些概率应该是非负的,而且它们加起来等于1。后一条我们可以这样表示:概率向量的 1-norm 必须是1。(1-norm 指的是每个元的绝对值加和。)

但是 1-norm 并不是这个世界上唯一的 norm ,它并不是定义向量“大小”的唯一方式。还有另外的方式来定义,比如说 2-norm, 又叫 Euclidean norm (欧几里德范数)。欧几里德范数指的是向量元平方和的开平方值。

如何概率论是基于 2-norm 而不是 1-norm,那么量子力学就是其结果。

让我们来考虑一个比特。在概率论里,我们描述一个比特是 0 的可能性是 p,那么是 1 的可能性就是 1-p 。如果我们把 1-norm 变为 2-norm, 那么就不需要要求这两个数字加起来是1,而是要求它们的平方和是1。(假设这里讨论的数字还是实数。)换句话说,我们需要的是这样一个向量 (α,β), 满足 α^2 + β^2 = 1 (有谁知道markdown如何插入公式?)。 这样的向量组会形成一个圆:


我们的理论必须的和观察有关, 假设有一个比特可以用这个向量(α,β)来描述,那么我们得说明当我们去这个比特的时候会发生什么。既然它是一个比特,我们应该看到0或者1!而且看到0的几率和看到1的几率加起来应该是1。那么对于这个(α,β)向量,我们该如何得到两个加起来等于1的数字?很简单,我们可以让 α^2 作为结果是0的概率,让 β^2 作为结果是1的概率。

那么在这个情况下,我们可以不抛弃 α 和 β,直接用概率来描述这个比特?啊....关键的差别在于当我们把一个算子作用在向量上面时向量的变化(这个过程称为operation)。在概率论里,如果一个比特用向量(p,1-p)来表示,那么我们可以用一个随机矩阵(stochastic matrix)来表示任何对于向量的操作(operation)。
随机矩阵:一个矩阵由非负实数构成,每一列加起来和为1。
比如说,一个 “翻转比特”操作,把结果为1的概率从p变成了1-p,那么这个操作可以表示为:
(此处应有图)
未完待续 欢迎关注这篇文章,我会随时更新的。

2014年12月14日:
这文章烂尾了,未来某日也许会更新。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容