关于机器学习中的广义线性模型(GLM)

在机器学习中,有着许多模型,比如传统的线性回归模型,logistic回归,soft max回归啊之类的很多,那么从传统的线性回归模型中我们观察到,这并不能很好的解决因变量是离散的或者是分类的这样的情况,经过国内外许多数学界的大牛们长期的摸索与验证,广义线性模型的理论被逐步建立起来,用以解决以往传统的线性回归模型的缺陷。
在引入广义线性模型之前,有必要先引入指数分布族(exponential family)这一概念
指数分布族的定义很简单,只要是形式上如同下图这样的即是指数分布族

其密度函数如果可以转化成这种形式的话,那么就为指数分布族
η是一个自然的参数,T(y)是充分统计量,一般来说T(y)=y,a(y)为累计量母函数。
正态分布,伯努利分布,泊松分布,指数分布等均属于指数分布族,我们可以求出相应的η的表达式。
根据三个假设来建立广义线性模型
y的概率分布服从指数分布
计算T(y)的期望
η是x的线性表示

那么到这里你可能还是不知道广义线性模型的作用,广义线性模型的主要作用在于第二个假设中,计算T(y)的期望,一般情况下就是计算y的期望,那么和我们之前学习的利用一个h(x)去估计y是不是有点类似呢,没错,就是这样的作用,我们之前利用一个线性带参的函数h(x)去估计其实都是基于我们对样本的理解从而主观假设出来的,而广义线性模型给出了一个通用的方法来计算出我们的假设函数h(x)
步骤一般是这样的,首先通过指数分布族的建立,我们可以计算出指数分布的各个参数的表达式,然后利用对于T(y)的期望来试着去估计y,而T(y)的期望我们可以通过概率统计的知识用原有的概率密度函数的参数表示出来,再利用之前我们得到的表达式,关联起来就可以得到T(y)和x之间的联系
举个简单的例子,伯努利分布(y只有0和1两种取值)


首先转换成指数分布族的形式
for3
for3

简单得

接着利用我们概率论的知识可以知道伯努利分布的期望就是概率,并且通过第三个假设我们知道x的线性表示其实就是μ,那么我们就将θ联系起来了
最后利用期望来估计y,得到

这其实就是logistic回归
到此,你应该对广义线性模型有个大概的了解,知道它有什么用怎么去用了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容