林轩田机器学习基石课程 - Pocket PLA算法 python实现

作业1:

Q1. Run the pocket algorithm with a total of 50 updates on D, and verify the performance of w pocket using the test set.
Please repeat your experiment for 2000 times, each with a different random seed.
What is the average error rate on the test set? Plot a histogram to show error rate versus frequency.

# calculate error count
def calError(self, X, Y, W):
    score = np.dot(X, W)
    Y_pred = np.ones_like(Y)
    Y_pred[score < 0] = -1
    err_cnt = np.sum(Y_pred != Y)
    return err_cnt

def pocket_pla_1(self, X_train, Y_train, X_test, Y_test):
    Iteration = 2000  # number of iteration
    Update = 50
    Errors = []  # list store error rate every iteration

    for iter in range(Iteration):
        np.random.seed(iter)  # set random seed, different by iteration
        permutation = np.random.permutation(X_train.shape[0])  # random select index
        X_train = X_train[permutation]  # random order X_train
        Y_train = Y_train[permutation]  # random order Y_train, as the same as X_train

        # look through the 50 iterations
        W = np.zeros(X_train.shape[1])  # weights initialization
        min_err = self.calError(X_train, Y_train, W)  # set initial W can make minimal error
        for i in range(Update):
            score = np.dot(X_train[i, :], W)  # score
            if score * Y_train[i] <= 0:  # classification error
                tmp = W + np.dot(X_train[i, :].T, Y_train[i])  # new tmp, wait to decide replace W
                tmp_err = self.calError(X_train, Y_train, tmp)  # calculate new error
                if tmp_err < min_err:
                    W = tmp  # update W
                    min_err = tmp_err  # update min_err

        # get W to test data
        Y_pred_test = np.dot(X_test, W)  # calculate score
        Y_pred_test[Y_pred_test > 0] = 1  # positive
        Y_pred_test[Y_pred_test < 0] = -1  # negative
        error = np.mean(Y_pred_test != Y_test)
        Errors.append(error)  # store error to list

    # mean of errors
    error_mean = np.mean(Errors)

    return error_mean

作业2

Q2. Modify your algorithm to return w50w50 (the PLA vector after 50 updates) instead of w (the pocket vector) after 50 updates. Run the modified algorithm on D, and verify the performance using the test set. Please repeat your experiment for 2000 times, each with a different random seed. What is the average error rate on the test set? Plot a histogram to show error rate versus frequency. Compare your result to the previous problem and briefly discuss your findings.

def pocket_pla_2(self, X_train, Y_train, X_test, Y_test):
    Iteration = 2000  # number of iteration
    Update = 50
    Errors = []  # list store error rate every iteration

    for iter in range(Iteration):
        np.random.seed(iter)  # set random seed, different by iteration
        permutation = np.random.permutation(X_train.shape[0])  # random select index
        X_train = X_train[permutation]  # random order X_train
        Y_train = Y_train[permutation]  # random order Y_train, as the same as X_train

        # look through the 50 iterations
        W = np.zeros(X_train.shape[1])  # weights initialization
        for i in range(Update):
            score = np.dot(X_train[i, :], W)  # score
            if score * Y_train[i] <= 0:  # classification error
                W = W + np.dot(X_train[i, :].T, Y_train[i])

        # get W to test data
        Y_pred_test = np.dot(X_test, W)  # calculate score
        Y_pred_test[Y_pred_test > 0] = 1  # positive
        Y_pred_test[Y_pred_test < 0] = -1  # negative
        error = np.mean(Y_pred_test != Y_test)
        Errors.append(error)  # store error to list

    # mean of error
    error_mean = np.mean(Errors)

    return error_mean

作业3

Q3. Modify your algorithm in Problem 1 to run for 100 updates instead of 50, and verify the performance of w pocket using the test set.
Please repeat your experiment for 2000 times, each with a different random seed. What is the average error rate on the test set? Plot a histogram to show error rate versus frequency. Compare your result to Problem 18 and briefly discuss your findings.

def pocket_pla_3(self, X_train, Y_train, X_test, Y_test):
    Iteration = 2000  # number of iteration
    Update = 100
    Errors = []  # list store error rate every iteration

    for iter in range(Iteration):
        np.random.seed(iter)  # set random seed, different by iteration
        permutation = np.random.permutation(X_train.shape[0])  # random select index
        X_train = X_train[permutation]  # random order X_train
        Y_train = Y_train[permutation]  # random order Y_train, as the same as X_train

        # look through the 50 iterations
        W = np.zeros(X_train.shape[1])  # weights initialization
        min_err = self.calError(X_train, Y_train, W)  # set initial W can make minimal error
        for i in range(Update):
            score = np.dot(X_train[i, :], W)  # score
            if score * Y_train[i] <= 0:  # classification error
                tmp = W + np.dot(X_train[i, :].T, Y_train[i])  # new tmp, wait to decide replace W
                tmp_err = self.calError(X_train, Y_train, tmp)  # calculate new error
                if tmp_err < min_err:
                    W = tmp  # update W
                    min_err = tmp_err  # update min_err

        # get W to test data
        Y_pred_test = np.dot(X_test, W)  # calculate score
        Y_pred_test[Y_pred_test > 0] = 1  # positive
        Y_pred_test[Y_pred_test < 0] = -1  # negative
        error = np.mean(Y_pred_test != Y_test)
        Errors.append(error)  # store error to list

    # mean of errors
    error_mean = np.mean(Errors)

    return error_mean
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容