Redis用作缓存,主要两个用途:高性能,高并发,因为内存天然支持高并发
一.缓存穿透:
缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透。
解决办法:
1.布隆过滤
对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃。还有最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。
Bloom filter
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。添加时增加计数器,删除时减少计数器。
2.缓存空对象. 将 null 变成一个值。
也可以采用一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是数 据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
3.在封装的缓存SET和GET部分增加个步骤,如果查询一个KEY不存在,就已这个KEY为前缀设定一个标识KEY;以后再查询该KEY的时候没查到数据,再查询标识KEY,如果标识KEY存在表示被标识的key缓存失效,此时就返回一个协定好的非false或者NULL值,然后APP做相应的处理,认为当前缓存失效了,这样缓存层就不会被穿透。当然这个验证KEY的失效时间不能太长,当db有值时,利用消息服务清除缓存的标识KEY。
缓存空对象会有两个问题:
第一,空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间 ( 如果是攻击,问题更严重 ),比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。
第二,缓存层和存储层的数据会有一段时间窗口的不一致,可能会对业务有一定影响。例如过期时间设置为 5分钟,如果此时存储层添加了这个数据,那此段时间就会出现缓存层和存储层数据的不一致,此时可以利用消息系统或者其他方式清除掉缓存层中的空对象。
二.缓存雪崩
如果缓存集中在一段时间内失效,发生大量的缓存穿透,所有的查询都落在数据库上,造成了缓存雪崩。
这个没有完美解决办法,但可以分析用户行为,尽量让失效时间点均匀分布。大多数系统设计者考虑用加锁或者队列的方式保证缓存的单线程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上。
解决方法
1.加锁排队. 限流-- 限流算法. 1.计数 2.滑动窗口 3. 令牌桶 4.漏桶
在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
业界比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法。
SETNX,是「SET if Not eXists」的缩写,也就是只有不存在的时候才设置,可以利用它来实现锁的效果。
2.数据预热
可以通过缓存reload机制,预先去更新缓存,再即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀
3.做二级缓存,或者双缓存策略。
A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期。
4.缓存永远不过期
这里的“永远不过期”包含两层意思:
(1)从缓存上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。
(2)从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期.
从实战看,这种方法对于性能非常友好,唯一不足的就是构建缓存时候,其余线程(非构建缓存的线程)可能访问的是老数据,但是对于一般的互联网功能来说这个还是可以忍受。
为什么Redis是单线程的?redis的单线程特性有什么优缺点?
1.redis是基于内存的,内存的读写速度非常快;
2.redis是单线程的,省去了很多上下文切换线程的时间;
3.redis使用多路复用技术,可以处理并发的连接。非阻塞IO 内部实现采用epoll,采用了epoll+自己实现的简单的事件框架。epoll中的读、写、关闭、连接都转化成了事件,然后利用epoll的多路复用特性,绝不在io上浪费一点时间。
因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了。
关于redis的性能,官方网站也有,普通笔记本轻松处理每秒几十万的请求。
在单线程的情况下,就不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗。
缓存(Redis)和数据库(MySQL)间的数据一致性问题
不管是先写MySQL数据库,再删除Redis缓存;还是先删除缓存,再写库,都有可能出现数据不一致的情况。举一个例子:
1.如果删除了缓存Redis,还没有来得及写库MySQL,另一个线程就来读取,发现缓存为空,则去数据库中读取数据写入缓存,此时缓存中为脏数据。
2.如果先写了库,在删除缓存前,写库的线程宕机了,没有删除掉缓存,则也会出现数据不一致情况。
因为写和读是并发的,没法保证顺序,就会出现缓存和数据库的数据不一致的问题。如何解决?这里给出两个解决方案,先易后难,结合业务和技术代价选择使用。
缓存和数据库一致性解决方案
1.第一种方案:采用延时双删策略
在写库前后都进行redis.del(key)操作,并且设定合理的超时时间。
伪代码如下:
public void write(String key,Object data){
redis.delKey(key);
db.updateData(data);
Thread.sleep(500);
redis.delKey(key);
}
这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。
当然这种策略还要考虑redis和数据库主从同步的耗时。最后的的写数据的休眠时间:则在读数据业务逻辑的耗时基础上,加几百ms即可。比如:休眠1秒。
设置缓存过期时间
从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案。所有的写操作以数据库为准,只要到达缓存过期时间,则后面的读请求自然会从数据库中读取新值然后回填缓存。
该方案的弊端
结合双删策略+缓存超时设置,这样最差的情况就是在超时时间内数据存在不一致,而且又增加了写请求的耗时。
2、第二种方案:异步更新缓存(基于订阅binlog的同步机制)
技术整体思路:
MySQL binlog增量订阅消费+消息队列+增量数据更新到redis
读Redis:热数据基本都在Redis写MySQL:增删改都是操作MySQL更新Redis数据:MySQ的数据操作binlog,来更新到Redis。
Redis更新
1)数据操作主要分为两大块
一个是全量(将全部数据一次写入到redis)一个是增量(实时更新)
这里说的是增量,指的是mysql的update、insert、delate变更数据。
2)读取binlog后分析 ,利用消息队列,推送更新各台的redis缓存数据。
这样一旦MySQL中产生了新的写入、更新、删除等操作,就可以把binlog相关的消息推送至Redis,Redis再根据binlog中的记录,对Redis进行更新。
其实这种机制,很类似MySQL的主从备份机制,因为MySQL的主备也是通过binlog来实现的数据一致性。
这里可以结合使用canal(阿里的一款开源框架),通过该框架可以对MySQL的binlog进行订阅,而canal正是模仿了mysql的slave数据库的备份请求,使得Redis的数据更新达到了相同的效果。
当然,这里的消息推送工具你也可以采用别的第三方:kafka、rabbitMQ等来实现推送更新Redis。
https://www.jianshu.com/p/2c735d41606e
Redis的持久化的方式和原理
Redis有哪些数据结构?持久化方案和区别?
Redis哨兵、集群的设计原理和区别?
3.redis的持久化方式,以及项目中用的哪种,为什么
4.redis集群的理解,怎么动态增加或者删除一个节点,而保证数据不丢失。(一致性哈希问题)
Redis缓存和数据库数据一致性问题
假如有一个用户,它的账户中有100块钱。现在有两个并发的请求:请求1为写操作,更新用户的余额,从100更新为200;请求2为查询操作,查询用户的余额。由于是并发的,两个请求之间的执行顺序是不确定的,我们来看一下下面的执行顺序:
1.请求1首先清除用户的缓存。
2.接着请求2查询缓存,由于缓存中没有数据,请求2继续查询数据库,得到余额为100。
3.请求1更新数据库,并将结果写入缓存。此时,数据库与缓存中的余额都是200。
4.请求2将数据库查询结果100写入缓存。
5.最终,余额在数据库中是200,而在缓存中是100,数据不一致。
造成这样的结果,原因有两个方面:一是写操作中更新数据库与更新缓存是两个操作,而不是一个原子操作;二是读操作中读取数据库和写入缓存两个操作不是原子的。要解决这个问题,需要做一些修改,引入分布式锁:
1.查询缓存,命中则直接返回结果。
2.对key加分布式锁。如果加锁失败,则等待一会再重新跳回第1步开始重新执行。
3.查询数据库,将结果直接写入缓存,返回结果,同时释放锁。