在loom文件中使用seurat处理单细胞数据

loom文件简介:http://linnarssonlab.org/loompy/format/index.html
seurat:https://satijalab.org/seurat/mca_loom.html
https://satijalab.org/loomR/loomR_tutorial.html

knitr::opts_chunk$set(echo = TRUE)
options(encoding = "UTF-8")

loom文件结构
The loom file is simply an HDF5 file with a strict structure imposed on it. This structure helps keep consistency in an otherwise unordered binary file and provides security in the knowledge of which data is which. Below is a summary of the file structure and rules imposed on each dataset; for more details, please read the loom file specification.
matrix
The root of a loom file’s structure, it has two dimensions of n genes and m cells
layers
Alternative representations of the data in matrix, must have the same dimensions as matrix
row_attrs and col_attrs
Metadata for rows (genes) and columns (cells), respectively; each dataset in these groups must be one- or two-dimensional and the first dimension must be n for row_attrs or m forcol_attrs
row_graphs and col_graphs
Sparse cluster graphs in coordinate form; each graph is a group with three equal-length datasets: a (row index), b (column index), and w (value)

library(Seurat)
library(loomR)
library(dplyr)
pbmc_small_loom<-create(filename = "pbmc.small.loom",data = pbmc_small@assays$RNA@counts,overwrite = T)
#这里也可以直接as.loom()

查看loom文件中的关键信息

pbmc_small_loom
pbmc_small_loom$matrix[1:6,1:6]
pbmc_small_loom$col.attrs$CellID[1:6]
pbmc_small_loom$row.attrs$Gene[1:6]

从loom中提取信息
As metadata is stored in several datasets within a loom file, each loom object has a get.attribute.df method: a method for collecting various metadata datasets and organizing them into a data frame for ease of use. This method takes a direction to look in (either 1 or 2 for row (gene) or column (cell) metadata, respectively) and a list of metadata dataset names. See below in the “Chunk-based iteration” section for details about MARGINs in loomR.
MARGIN:
Several methods for a loom object have a MARGIN argument; this argument tells the loom file on which dimension to iterate over, add, or fetch data. To keep consistent with other R tools for single-cell RNAseq analysis, a MARGIN of 1 represents the rows, or genes, while a MARGIN of 2 represents the columns, or cells. This also applies to the shape field of a loom object: index 1 represents the number of genes in a loom file while index 2 represents the number of cells.

pbmc_small_loom$get.attribute.df(MARGIN = 1,attributes = "Gene")[1:6,]
pbmc_small_loom$get.attribute.df(MARGIN = 2,attributes = "CellID")[1:6,]

向loom中添加信息
We can layers, gene-level metadata (row_attrs), and cell-level metadata (col_attrs) to a loom object using loomR. You can read full details at the loom file specification.

Methods for adding layers and matrices are provided by the loom class with add.layer, add.row.attribute, and add.col.attribute. All of the adding methods take a named list of either matrices or vectors. For example, to ENSEMBL IDs to gene-level metadata would be done as follows:

# Generate random ENSEMBL IDs for demonstration purposes
ensembl.ids <- paste0("ENSG0000", 1:length(x = pbmc_small_loom$row.attrs$Gene[]))
# Use add.row.attribute to add the IDs Note that if you want to overwrite an
# existing value, set overwrite = TRUE
pbmc_small_loom$add.row.attribute(list(ensembl.id = ensembl.ids), overwrite = TRUE)
pbmc_small_loom$get.attribute.df(MARGIN = 1)[1:6,]

进行seurat操作

pbmc_small_seurat<-as.Seurat(pbmc_small_loom)
pbmc_small_seurat<-NormalizeData(pbmc_small_seurat)%>%ScaleData()

关闭loom

pbmc_small_loom$close_all()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352