下面出现的例子中需要读取的文件都存放在我自己的电脑 D:\Python\notebook\pydata-book-master\ch06 中。
缺失值处理
缺失数据经常是要么没有(空字符串),要么用某个标记值表示。
逐块读取文本文件
在处理很大的文件时,我们可能只需读取文件很小的一部分。
源代码为:
# coding: utf-8
# # 使用pandas读取文本文件
# In[1]:
import numpy as np
from pandas import Series,DataFrame
import pandas as pd
# ### 方法一:使用read_csv读入csv文件
# In[2]:
df = pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex1.csv')
print(df)
# ### 方法二:使用read_table读入csv文件
# In[3]:
# 不指定分隔符的情况
df2 = pd.read_table('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex1.csv')
print(df2)
# In[4]:
# 使用参数sep指定分隔符情况
df3 = pd.read_table('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex1.csv',sep=',')
print(df3)
# In[5]:
'''
如果读取的文件没有列表头,使用header参数自动分配列表头
'''
df_ex2 = pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex2.csv')
print(df_ex2)
# In[6]:
# 自动分配表头
df_ex2 = pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex2.csv',header=None)
print(df_ex2)
# In[7]:
# 使用names参数指定列表头
df_ex2_name = pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex2.csv',names=['一','二','三','四','message'])
print(df_ex2_name)
# In[8]:
# 使用index_col参数指定DataFrame的索引(行表头)
names=['一','二','三','四','message']
df_ex2_DF= pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex2.csv',names=names,index_col='message')
print(df_ex2_DF)
# ### 使用正则表达式作为read_table分隔符
# In[9]:
list(open('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex3.txt'))
# In[10]:
# 使用正则表达式\s+处理空白符分隔
result = pd.read_table('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex3.txt',sep='\s+')
print(result)
# ### 缺失值处理
# In[11]:
# 默认使用NaN填充缺失值
df_na = pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex5.csv')
print(df_na)
# In[12]:
# 使用isnull转为布尔值来标记NA值
pd.isnull(df_na)
# In[13]:
print(df_na)
# 使用一个字典把各列指定值转为NA值
new_na = {'message':['foo'],'c':[11],'something':['two']}
new_na_values = pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex5.csv',na_values=new_na)
print('\n new_na_values:\n',new_na_values)
# ### 逐块读取文本文件
# In[14]:
# 读取一个10000行5列的.csv文件
all_Csv = pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex6.csv')
print(all_Csv)
# In[15]:
# 只读取5行文件
part_Csv = pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex6.csv',nrows=5)
print(part_Csv)
# In[16]:
# 根据chunksize对文件进行逐块迭代
chunker = pd.read_csv('D:\\Python\\notebook\\pydata-book-master\\ch06\\ex6.csv',chunksize=1000)
print(chunker)
# In[17]:
# 统计 key 这一列中各个值出现的次数
tot = Series([])
for piece in chunker:
tot = tot.add(piece['key'].value_counts(),fill_value=0)
#print(tot)
# 对结果进行降序排序
new_tot = tot.sort_values(ascending=False)
print(new_tot)
# In[18]:
# 选取前10行的结果显示
df_tot = new_tot[:10]
print(df_tot)