import numpy
# 指定路径 分隔符 类型 shi_header 跳过标题
world_alcohol = numpy.genfromtxt("dang.txt",delimiter=",",encoding='utf8',dtype=str,skip_header=1)
# class numpy.ndarray
print(type(world_alcohol))
print(world_alcohol)
# 打印帮助文档
print(help(numpy.genfromtxt))
vector = numpy.array([5,10,15,20])
matrix = numpy.array([[5,10,15,20],[20,25,30],[35,40,45]])
print(vector)
print(matrix) # 二维数组
print(vector.shape) # 查看结构
print(matrix.shape)
print(vector.dtype) # numpy 需要同一类型
import numpy as np
print(np.arange(15))
a = np.arange(15).reshape(3,5) # 一维 转 二维
a
import pandas
food_info = pandas.read_csv('dangdang1.csv')
print(type(food_info))
print(food_info.dtypes)
print(help(pandas.read_csv))
print(food_info)
food_info.head() # 默认 前5行
food_info.tail() # 默认 后5行
food_info.columns # 列名
food_info.shape # 维度 大小 行列
food_info.loc[0] # 第一条数据 行
# food_info.dtypes
# object For string values
# int For integer values
# float For float values
# datetime For time values
# bool For Boolean values
food_info.loc[3:6] # 行切片
ndb_col = food_info['rank'] # 根据列名 取列
# col_name = "rank" 列名赋值
# ndb_col = food_info[cil_name] 根据变量取列
columns = ['rank','name'] # 取多个列 组成list
zinc_copper = food_info[columns] # 根据list 取多个列
print(zinc_copper)
col_names = food_info.columns.tolist() # 所有的列名 list
print(col_names)
gram_columns = []
for c in col_names:
if c.endswith('s'):
gram_columns.append(c)
gram_df = food_info[gram_columns] # 拿到所有以 s 结尾的列名
print(gram_df.head())
print(food_info['comments'])
div_1000 = food_info['comments'] / 1000 # 算术运算
print(div_1000)
food_info['div_1000'] = div_1000 # 新建一列 并赋值
max_calories = food_info['comments'].max() # 求一列 最大值
print(max_calories)
food_info.sort_values('comments',inplace=True) # 根据某列排序 inplace=True 在原来的基础上排序
print(food_info['comments'])
food_info
# food_info.sort_values('comments',inplace=True,ascending=False) ascending = False 为升序 默认为降序
# comments = food_info['comments'] 判断缺失值处理
# comments_is_null = pandas.isnull(comments)
# comments_is_null
# comments[comments_is_null]
# sum 求和
# len 长度
# mean 求均值
# comments_nonull = food_info['comments'][comments_is_null == False] 去除缺失值
numpy and pandas
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 如果用 python 的列表和字典来作比较, 那么可以说 Numpy 是列表形式的,没有数值标签,而 Pandas...
- 2018.9.26——2018.10.22 Introduction To NumPy 1.常规操作是先用 csv...
- Numpy 函数作用a=np.array([2,23,4],dtype=np.float)把列表转换成矩阵(我们创...