reactive streams与观察者模式

本文主要研究下java里头的reactive streams与观察者模式。

reactive streams

reactive编程范式是一个异步编程范式,主要涉及数据流及变化的传播,可以看做是观察者设计模式的扩展。

java里头的iterator是以pull模型,即订阅者使用next去拉取下一个数据;而reactive streams则是以push模型为主,订阅者调用subscribe方法订阅,发布者调用订阅者的onNext通知订阅者新消息。

reactive streams java api

reactive streams定义了4个java api,如下

Processor<T,R>

processor既是Subscriber也是Publisher,代表二者的处理阶段

Publisher<T>

publisher是数据的提供者, 将数据发布给订阅者

Subscriber<T>

在调用Publisher.subscribe(Subscriber)之后,Subscriber.onSubscribe(Subscription)将会被调用

Subscription

Subscription代表订阅者与发布者的一次订阅周期,一旦调用cancel去掉订阅,则发布者不会再推送消息。

观察者模式

080309_mlKt_1383356.png

观察者模式的实现有推模型和拉模型

  • 拉模型

即发布者通知订阅有新消息,订阅者再去找发布者拉取

  • 推模型

即发布者通知订阅者有消息,通知的时候已经带上了一个新消息

reactor实例

maven

        <dependency>
            <groupId>io.projectreactor</groupId>
            <artifactId>reactor-core</artifactId>
            <version>3.1.2.RELEASE</version>
        </dependency>

reactor 3 是java里头reactive streams的一个实现,基于reactive streams的java api,是spring 5反应式编程的基础。

Flux实例

    @Test
    public void testBackpressure(){
        Flux.just(1, 2, 3, 4)
                .log()
                .subscribe(new Subscriber<Integer>() {
                    private Subscription s;
                    int onNextAmount;

                    @Override
                    public void onSubscribe(Subscription s) {
                        this.s = s;
                        s.request(2);
                    }

                    @Override
                    public void onNext(Integer integer) {
                        System.out.println(integer);
                        onNextAmount++;
                        if (onNextAmount % 2 == 0) {
                            s.request(2);
                        }
                    }

                    @Override
                    public void onError(Throwable t) {}

                    @Override
                    public void onComplete() {}
                });

        try {
            Thread.sleep(10*1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

小结

从上面的代码看,reactive streams实际上是推拉结合的模式的结合。为什么还要拉呢?

rabbitmq vs kafka

rabbitmq是以推为主的,如果消费者消费能力跟不上,则消息会堆积在内存队列中(必要时可能写磁盘)

kafka则是以拉为主的,生产者推送消息到broker,消费者自己根据自己的能力从broker拉取消息,由于消息是持久化的,因此无需关心生产消费速率的不平衡

backpressure

backpressure这个是为处理生产速率与消费速率不平衡这个问题而衍生出来的,订阅者可以在next方法里头根据自己的情况,使用request方法告诉发布者要取N个数据,发布者则向订阅者推送N个数据。通过request达到订阅者对发布者的反馈。而对于发布者而言,为了实现backpressure,则需要有一个缓存队列来缓冲订阅者没来得及消费的数据。涉及到缓冲,就涉及容量是有界还是无界,如果是有界则在缓冲慢的时候,处理策略是怎样等等。

doc

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352