hive数据倾斜原理与解决方案

一、数据倾斜原理

join实现原理

sql = select name, orderid

from user t1

join order t2

on t1.uid=t2.uid

group by 实现原理

sql = select rank, isonline, count(1)

from city

group by 1, 2

数据倾斜出现原因

1、对于join过程来说,如果出项较多的key值为空或异常的记录,或key值分布不均匀,就容易出现数据倾斜,

2、对于group by 过程来说,如果某一个key值有特别的多的记录,其它key值的记录比较少,也容易出项数据倾斜。

二、数据倾斜的解决方案

join引起数据倾斜的解决方法

1、如果是由于key值为空或为异常记录,且这些记录不能被过滤掉的情况下,可以考虑给key赋一个随机值,将这些值分散到不同的reduce进行处理。

2、如果是一个大表和一个小表join的话,可以考虑使用mapjoin来避免数据倾斜,mapjoin的具体过程如下。分为两步:

1) 通过mapreduce local task, 扫描小表,生成为一个hashtable文件, 并上传到distributed cache

2) 在map阶段,每个mapper, 从distributed cache中读取hashtable文件,扫描大表,并直接在map端join

3)在key值都为有效值时,还可以通过设置每个reduce处理的数据量的大小来处理数据倾斜,即:

set hive.exec.reducers.bytes.per.reducer = 1000000000或

set mapred.reduce.tasks=800 这两个一般不同时使用,

另外,还可以设置下面两个参数:

set hive.optimize.skewjoin = true;

set hive.skewjoin.key = skew_key_threshold (default = 100000)

可以就按官方默认的1个reduce 只处理1G 的算法,那么skew_key_threshold= 1G/平均行长.或者默认直接设成250000000 (差不多算平均行长4个字节)

group by 引起数据倾斜的解决方法

set hive.map.aggr=true,开启map之后使用combiner,这样基本上是对各记录比较同质的数据效果比较好,相反,则没有什么意义。通用的做法是设置下面两个参数:

set hive.groupby.mapaggr.checkinterval = 100000 (默认)执行聚合的条数

set hive.map.aggr.hash.min.reduction=0.5(默认)如果hash表的容量与输入行数之比超过这个数,那么map端的hash聚合将被关闭,默认是0.5,设置为1可以保证hash聚合永不被关闭;

还有一个是set hive.groupby.skewindata=true, 这个只针对单列有效。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容