EZ | Deep Snow: 使用GANs合成遥感图像 | 04

结论

我们揭示了以下结论:CyeleGAN用于遥感图像生成是可行的,尤其是给没有雪的地面覆盖雪。尽管这个生成结果并不能骗过人的眼睛,但通过对某些区域的详细观察,可以找到一些植入的伪像:这就提示我们做任何操作时都要小心它对后面过程的影响。我们还介绍了一些质量评估的方法,可以用来指导CycleGAN这种非配对训练应该何时停止——虽然只研究了一下同域翻译(RGB\rightarrowRGB),我们预感到,以后可能要用CycleGAN或pix2pix在跨域之间做实验,但就像我们已经说了的那些一样:我们要对这些模型引入的潜在的artifacts做潜在的分析。

致谢

本文得到了洛斯阿拉莫斯实验室研究与开发计划和空间与地球中心的支持。还要感谢笛卡尔实验室的图像和技术支持。最后,还要感谢同志们的建设性的讨论。

引用

[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y., “Generative adversarial nets,” in [Advances in Neural Information Processing Systems], 2672– 2680 (2014).

[2] Schmitt, M., Hughes, L. H., and Zhu, X. X., “The SEN1-2 dataset for deep learning in SAR-optical data fusion,” arXiv preprint arXiv:1807.01569 (2018).

[3] Grohnfeldt, C., Schmitt, M., and Zhu, X., “A conditional generative adversarial network to fuse SAR and multispectral optical data for cloud removal from Sentinel-2 images,” in [International Geoscience and Remote Sensing Symposium (IGARSS)], 1726–1729, IEEE (2018).

[4] Ji, G., Wang, Z., Zhou, L., Xia, Y., Zhong, S., and Gong, S., “SAR image colorization using multidomain cycle-consistency generative adversarial network,” IEEE Geoscience and Remote Sensing Letters (2020).

[5] Fuentes Reyes, M., Auer, S., Merkle, N., Henry, C., and Schmitt, M., “SAR-to-optical image translation based on conditional generative adversarial networksoptimization, opportunities and limits,” Remote Sens- ing 11(17), 2067 (2019).

[6] Schmitt, M., Hughes, L. H., Qiu, C., and Zhu, X. X., “SEN12MS–a curated dataset of georeferenced multi- spectral Sentinel-1/2 imagery for deep learning and data fusion,” arXiv preprint arXiv:1906.07789 (2019).

[7] Toriya, H., Dewan, A., and Kitahara, I., “SAR2OPT: Image alignment between multi-modal images using generative adversarial networks,” in [International Geoscience and Remote Sensing Symposium (IGARSS)], 923–926, IEEE (2019).

[8] Mohajerani, S., Asad, R., Abhishek, K., Sharma, N., van Duynhoven, A., and Saeedi, P., “Cloudmaskgan: A content-aware unpaired image-to-image translation algorithm for remote sensing imagery,” in [International Conference on Image Processing (ICIP)], 1965–1969, IEEE (2019).

[9] Ren, C. X., Ziemann, A., Durieux, A., and Theiler, J., “Cycle-consistent adversarial networks for realistic pervasive change generation in remote sensing imagery,” arXiv preprint arXiv:1911.12546 (2019).

[10] Theiler, J. and Perkins, S., “Proposed framework for anomalous change detection,” in [ICML Workshop on Machine Learning Algorithms for Surveillance and Event Detection], 7–14 (2006).

[11] Goodfellow, I., “NIPS 2016 tutorial: Generative adversarial networks,” arXiv preprint arXiv:1701.00160 (2016).

[12] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A., “Image-to-image translation with conditional adversarial networks,” in [Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)], 1125–1134 (2017).20–22

[13] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A., “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in [Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)], 2223–2232 (2017).

[14] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A., “Going deeper with convolutions,” in [Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)], 1–9 (2015).

[15] Dowson, D. C. and Landau, B. V., “The Fr ́echet distance between multivariate normal distributions,” Journal of Multivariate Analysis 12(3), 450–455 (1982).

[16] Vaserstein, L. N., “Markov processes over denumerable products of spaces, describing large systems of automata,” Problemy Peredachi Informatsii 5(3), 64–72 (1969).

[17] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S., “GANs trained by a two timescale update rule converge to a local Nash equilibrium,” in [Advances in Neural Information Processing Systems], 6626–6637 (2017).

[18] He, K., Zhang, X., Ren, S., and Sun, J., “Deep residual learning for image recognition,” in [Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)], 770–778 (2016).

[19] Keisler, R., Skillman, S. W., Gonnabathula, S., Poehnelt, J., Rudelis, X., and Warren, M. S., “Visual search over billions of aerial and satellite images,” Computer Vision and Image Understanding 187, 102790 (2019).

[20] Longbotham, N., Pacifici, F., Glenn, T., Zare, A., Volpi, M., Tuia, D., Christophe, E., Michel, J., Inglada, J., Chanussot, J., et al., “Multi-modal change detection, application to the detection of flooded areas: Outcome of the 2009–2010 data fusion contest,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(1), 331–342 (2012).

[21] Ziemann, A., Ren, C. X., and Theiler, J., “Multi-sensor anomalous change detection at scale,” in [Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV], 10986, 1098615,
International Society for Optics and Photonics (2019).

[22] Touati, R., Mignotte, M., and Dahmane, M., “Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based markov random field model,” IEEE Trans. Image Processing 29, 757– 767 (2019).

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343