LDA

主题模型用于提取文本信息中的主题。是无监督学习方法。
主题模型主要用于文本聚类,用于对非结构化的本文提取信息和特征。


image.png

alpha和beta超参数 – alpha 表示文档-主题密度,beta表示主题-词密度。alpha值越大,表示文档由更多的主题构成,越小,则文档会集中于某几个主题。同理,beta值越大,构成主题的词越多,越小,则主题词越少。
主题数 - 语料中需要提取的主题数。可以使用KL散度来获取合适的主题数。
主题词数 - 如果问题陈述是关于提取主题或概念的,建议选择一个更高的数字,如果问题陈述涉及到提取特性或术语,建议使用一个较低的数字。
迭代/传递的数量——允许LDA算法收敛的最大迭代次数。

doc1 = "Sugar is bad to consume. My sister likes to have sugar, but not my father."
doc2 = "My father spends a lot of time driving my sister around to dance practice."
doc3 = "Doctors suggest that driving may cause increased stress and blood pressure."
doc4 = "Sometimes I feel pressure to perform well at school, but my father never seems to drive my sister to do better."
doc5 = "Health experts say that Sugar is not good for your lifestyle."

# compile documents
doc_complete = [doc1, doc2, doc3, doc4, doc5]

分词

from nltk.corpus import stopwords 
from nltk.stem.wordnet import WordNetLemmatizer
import string
stop = set(stopwords.words('english'))
exclude = set(string.punctuation) 
lemma = WordNetLemmatizer()
def clean(doc):
     stop_free = " ".join([i for i in doc.lower().split() if i not in stop])
     punc_free = ''.join(ch for ch in stop_free if ch not in exclude)
     normalized = " ".join(lemma.lemmatize(word) for word in punc_free.split())
     return normalized

doc_clean = [clean(doc).split() for doc in doc_complete]  

将分词结果转化为DT矩阵(TF-IDF)

# Importing Gensim
import gensim
from gensim import corpora

# Creating the term dictionary of our courpus, where every unique term is assigned an index. 
dictionary = corpora.Dictionary(doc_clean)

# Converting list of documents (corpus) into Document Term Matrix using dictionary prepared above.
#TF
doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean]
#TF-IDF
corpus_tfidf = models.TfidfModel(corpus)[corpus]

运行LDA模型

# Creating the object for LDA model using gensim library
Lda = gensim.models.ldamodel.LdaModel

# Running and Trainign LDA model on the document term matrix.
ldamodel = Lda(doc_term_matrix, num_topics=3, id2word = dictionary, passes=50)

结果

print(ldamodel.print_topics(num_topics=3, num_words=3))
 ['0.168*health + 0.083*sugar + 0.072*bad,
 '0.061*consume + 0.050*drive + 0.050*sister,
 '0.049*pressur + 0.049*father + 0.049*sister]

参考:https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容