题目
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]
分析
最简单的思路,就是通过对target减去candidates中的一个数来得到一个子问题。通过递归求解即可。还需要解决的一点是,这种方法会导致重复,所以需要在最后加入一个去重的部分,首先对每个解法中的数字排序,然后对所有解排序,最后去重得到结果。
实现一
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> ans;
ans = solve(candidates, target);
for(int i=0; i<ans.size(); i++){
sort(ans[i].begin(), ans[i].end());
}
sort(ans.begin(), ans.end());
ans.erase(unique(ans.begin(), ans.end()), ans.end());
return ans;
}
private:
vector<vector<int>> solve(vector<int>& candidates, int target) {
vector<vector<int>> ans;
for(auto num: candidates){
if(target-num<0){
continue;
}
else if(target-num==0){
ans.push_back({num});
}
else{
vector<vector<int>> tmp;
tmp = solve(candidates, target-num);
if(tmp.empty())
continue;
for(auto v: tmp){
v.push_back(num);
ans.push_back(v);
}
}
}
return ans;
}
};
思考一
这种方法固然可行,但是由于重复的存在,会导致效率偏低。所以着手考虑优化。对每个子问题的解都进行去重可以缩短一部分时间,但是效果不是很明显。
较好的改进方法是,在递归的下一步时,只使用candidates中大于等于上一个使用的数字,这样就能保证所得的序列是递增的,也能保证其不重复。这样大大减少了运算时间。
实现二
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> ans;
ans = solve(candidates, target, 0);/*
for(int i=0; i<ans.size(); i++){
sort(ans[i].begin(), ans[i].end());
}
sort(ans.begin(), ans.end());
ans.erase(unique(ans.begin(), ans.end()), ans.end());*/
return ans;
}
private:
vector<vector<int>> solve(vector<int>& candidates, int target, int start) {
vector<vector<int>> ans;
for(int i=start; i<candidates.size(); i++){
if(target-candidates[i]<0){
continue;
}
else if(target-candidates[i]==0){
ans.push_back({candidates[i]});
}
else{
vector<vector<int>> tmp;
tmp = solve(candidates, target-candidates[i], i);
if(tmp.empty())
continue;
for(auto v: tmp){
v.push_back(candidates[i]);
ans.push_back(v);
}
}
}
return ans;
}
};