文本聚类

文本聚类

import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer #基于TF-IDF词频转换向量库
from sklearn.cluster import KMeans
import jieba.posseg as pseg

中文分词

def jieba_cut(collect):
word_list = []
seg_list = pseg.cut(collect) #精确模式分词
for word in seg_list:
if word.flag in ['a','ag','an']: #只选择形容词
word_list.append(word.word) #分词追加到列表
return word_list

读取文件

fn = open('D:/collect.txt',encoding='utf-8')
collect_list = fn.readlines() #读取文件内容为列表
fn.close()

word to vector

stop_words = [u'…', u'。', u',', u'?', u'!', u'+', u' ', u'、', u':', u';', u'(', u')', u'.', u'-'] # 定义停用词
vectorizer = TfidfVectorizer(stop_words=stop_words, tokenizer=jieba_cut, use_idf=True) # 创建词向量模型
X = vectorizer.fit_transform(collect_list) # 将评论关键字列表转换为词向量空间模型

k均值聚类

K均值聚类

model_kmeans = KMeans(n_clusters=3) # 创建聚类模型对象
model_kmeans.fit(X) # 训练模型

聚类结果汇总

cluster_labels = model_kmeans.labels_ # 聚类标签结果
word_vectors = vectorizer.get_feature_names() # 词向量
word_values = X.toarray() # 向量值
comment_matrix = np.hstack((word_values, cluster_labels.reshape(word_values.shape[0], 1))) # 将向量值和标签值合并为新的矩阵
word_vectors.append('cluster_labels') # 将新的聚类标签列表追加到词向量后面
comment_pd = pd.DataFrame(comment_matrix, columns=word_vectors) # 创建包含词向量和聚类标签的数据框
print (comment_pd.head(1)) # 打印输出数据框第1条数据

聚类结果分析

comment_cluster1 = comment_pd[comment_pd['cluster_labels'] == 2].drop('cluster_labels', axis=1) # 选择聚类标签值为2的数据,并删除最后一列
word_importance = np.sum(comment_cluster1, axis=0) # 按照词向量做汇总统计
print (word_importance.sort_values(ascending=False)[:20]) # 按汇总统计的值做逆序排序并打印输出前5个词

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 注:这篇技术文章是9月我就职于W公司时在完成新闻聚类后整理的技术文档,因数据管控严格,文档中的聚类结果无法从公司电...
    Mc杰夫阅读 8,572评论 5 5
  • 背景介绍 文本情感分析作为NLP的常见任务,具有很高的实际应用价值。本文将采用LSTM模型,训练一个能够识别文本p...
    城市中迷途小书童阅读 1,723评论 0 0
  • 最近一段时间在文本聚类的工作,一路也遇到了不少坑,自己也写一篇文章记录了一下自己的过程. 1:什么是文本聚类 先说...
    云时之间阅读 13,074评论 0 15
  • 背景介绍 由于项目需要,需要对旅游游记文本进行聚类,为打标签做指导,所以调研了主流的短文本聚类方法,文本聚类主要还...
    bupt_周小瑜阅读 14,335评论 3 22
  • 参考文章:http://www.ruanyifeng.com/blog/2014/02/ssl_tls.htmlh...
    枫枫大世界阅读 482评论 0 0