《机器学习及实践——从零开始通往KAGGLE竞赛之路》读书笔记八

集成模型(分类)

模型描述

集成(Ensemble)分类模型便是综合考量多个分类器的预测结果,从而做出决策。这种综合考量的方式大体上分为两种:
一是利用相同的训练数据同时搭建多个独立的分类模型,然后通过投票的方式,以少数服从多数的原则来做出最终的分类决策。比较具有代表性的模型是随机森林分类器(Random Forest Classifier),即在相同训练数据上同时搭建多棵决策树(Decision Tree)。一棵标准的决策树会根据每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分裂节点的顺序;如此一来,所有在随机森林分类器中的决策树都会受这一策略影响而构建得完全一致,从而丧失多样性。因此,随机森林分类器在构建过程中,每一棵决策树都会放弃这一固定的排序算法,转而随机选取特征。

另一种是按照一定的次序构建多个分类模型,这些模型之间彼此存在依赖关系。一般而言,每一个后续模型的加入都需要对现有集成模型的综合性能有所贡献,进而不断提升更新过后的集成模型的性能,并最终期望借助整合多个分类能力较弱的分类器,搭建出具有更强分类能力的模型。比较具有代表性的是梯度提升决策树(Gradient Tree Boosting)。与构建随机森林分类器模型不同,这里每一棵决策树在生成的过程中都会尽可能降低整体集成模型在训练集上的拟合误差。

数据描述

依旧是泰坦尼克数据。

# 导入pandas,并且重命名为pd。
import pandas as pd

# 通过互联网读取泰坦尼克乘客档案,并存储在变量titanic中。
titanic = pd.read_csv('C:\\Datasets\\Titanic\\titanic.txt')
# 人工选取pclass、age以及sex作为判别乘客是否能够生还的特征。
X = titanic[['pclass', 'age', 'sex']]
y = titanic['survived']

# 对于缺失的年龄信息,我们使用全体乘客的平均年龄代替,这样可以在保证顺利训练模型的同时,尽可能不影响预测任务。
X['age'].fillna(X['age'].mean(), inplace=True)

# 对原始数据进行分割,25%的乘客数据用于测试。
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state = 33)

# 对类别型特征进行转化,成为特征向量。
from sklearn.feature_extraction import DictVectorizer

vec = DictVectorizer(sparse=False)
X_train = vec.fit_transform(X_train.to_dict(orient='record'))
X_test = vec.transform(X_test.to_dict(orient='record'))

# 使用单一决策树进行模型训练以及预测分析。
from sklearn.tree import DecisionTreeClassifier

dtc = DecisionTreeClassifier()
dtc.fit(X_train, y_train)
dtc_y_pred = dtc.predict(X_test)

# 使用随机森林分类器进行集成模型的训练以及预测分析。
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
rfc_y_pred = rfc.predict(X_test)
from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier()
gbc.fit(X_train, y_train)
gbc_y_pred = gbc.predict(X_test)

# 从sklearn.metrics导入classification_report。
from sklearn.metrics import classification_report

# 输出单一决策树在测试集上的分类准确性,以及更加详细的精确率、召回率、F1指标。
print ('The accuracy of decision tree is', dtc.score(X_test, y_test))
print (classification_report(dtc_y_pred, y_test))
The accuracy of decision tree is 0.7811550151975684
              precision    recall  f1-score   support

           0       0.91      0.78      0.84       236
           1       0.58      0.80      0.67        93

    accuracy                           0.78       329
   macro avg       0.74      0.79      0.75       329
weighted avg       0.81      0.78      0.79       329
# 输出随机森林分类器在测试集上的分类准确性,以及更加详细的精确率、召回率、F1指标。
print ('The accuracy of random forest classifier is', rfc.score(X_test, y_test))
print (classification_report(rfc_y_pred, y_test))
The accuracy of random forest classifier is 0.7811550151975684
              precision    recall  f1-score   support

           0       0.90      0.78      0.83       234
           1       0.59      0.79      0.68        95

    accuracy                           0.78       329
   macro avg       0.75      0.78      0.76       329
weighted avg       0.81      0.78      0.79       329
# 输出梯度提升决策树在测试集上的分类准确性,以及更加详细的精确率、召回率、F1指标。
print ('The accuracy of gradient tree boosting is', gbc.score(X_test, y_test))
print (classification_report(gbc_y_pred, y_test))
The accuracy of gradient tree boosting is 0.790273556231003
              precision    recall  f1-score   support

           0       0.92      0.78      0.84       239
           1       0.58      0.82      0.68        90

    accuracy                           0.79       329
   macro avg       0.75      0.80      0.76       329
weighted avg       0.83      0.79      0.80       329

特点分析

集成模型可以说是实战应用中最常见的,相比于其他单一模型,集成模型可以集成多种模型,或者多次就一种类型的模型进行建模。由于模型估计参数的过程也同样收到概率的影响,具有一定不确定性。虽然在训练过程中要耗费更多的时间,但是得到的综合模型往往具有更高的表现性能和稳定性。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容