零基础入门语义分割-地表建筑物识别Baseline

赛题背景

赛题以计算机视觉为背景,要求选手使用给定的航拍图像训练模型并完成地表建筑物识别任务。为更好的引导大家入门,我们为本赛题定制了学习方案和学习任务,具体包括语义分割的模型和具体的应用案例。在具体任务中我们将讲解具体工具和使用和完成任务的过程。

通过对本方案的完整学习,可以帮助掌握语义分割基本技能。同时我们也将提供专属的视频直播学习通道。

赛题描述及数据说明

遥感技术已成为获取地表覆盖信息最为行之有效的手段,遥感技术已经成功应用于地表覆盖检测、植被面积检测和建筑物检测任务。本赛题使用航拍数据,需要参赛选手完成地表建筑物识别,将地表航拍图像素划分为有建筑物和无建筑物两类。

如下图,左边为原始航拍图,右边为对应的建筑物标注。

enter image description here

赛题数据来源(Inria Aerial Image Labeling),并进行拆分处理。数据集报名后可见并可下载。赛题数据为航拍图,需要参赛选手识别图片中的地表建筑具体像素位置。

  • train_mask.csv:存储图片的标注的rle编码;
  • traintest文件夹:存储训练集和测试集图片;

rle编码的具体的读取代码如下:

import numpy as np
import pandas as pd
import cv2

# 将图片编码为rle格式
def rle_encode(im):
    '''
    im: numpy array, 1 - mask, 0 - background
    Returns run length as string formated
    '''
    pixels = im.flatten(order = 'F')
    pixels = np.concatenate([[0], pixels, [0]])
    runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
    runs[1::2] -= runs[::2]
    return ' '.join(str(x) for x in runs)

# 将rle格式进行解码为图片
def rle_decode(mask_rle, shape=(512, 512)):
    '''
    mask_rle: run-length as string formated (start length)
    shape: (height,width) of array to return 
    Returns numpy array, 1 - mask, 0 - background

    '''
    s = mask_rle.split()
    starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
    starts -= 1
    ends = starts + lengths
    img = np.zeros(shape[0]*shape[1], dtype=np.uint8)
    for lo, hi in zip(starts, ends):
        img[lo:hi] = 1
    return img.reshape(shape, order='F')

读取样例:

train_mask = pd.read_csv('train_mask.csv', sep='\t', names=['name', 'mask'])

# 读取第一张图,并将对于的rle解码为mask矩阵
img = cv2.imread('train/'+ train_mask['name'].iloc[0])
mask = rle_decode(train_mask['mask'].iloc[0])

print(rle_encode(mask) == train_mask['mask'].iloc[0])
# 结果为True

评估标准

赛题使用Dice coefficient来衡量选手结果与真实标签的差异性,Dice coefficient可以按像素差异性来比较结果的差异性。Dice coefficient的具体计算方式如下:

结果提交

提交前请确保预测结果的格式与test_sample_submit.csv中的格式一致,以及提交文件后缀名为csv。

注意事项:

  • 第一列为test图片名称,第二列为rle编码;
  • 如测试集图没有识别出结果,也需要提交空字符串;
  • 测试集图片顺序需要与test_sample_submit.csv保持一致;
    image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容