-
应用背景
之前使用adb的指令
adb shell uiautomator dump --compressed /data/local/tmp/uidump.xml
来获取布局文件,然后识别控件的坐标位置,但发现会报
ERROR: could not get idle state
orcould not get idle state
的错误,效率很低。因此后来采用了先截屏,然后通过图片匹配识别控件位置,返回控件的坐标,即是本文要介绍的内容,由于开发用java,顺其自然的使用了javaCV,但目前这方面的资料较少。
-
先来看具体效果
截屏得到的原图
需要识别点赞按钮图标
匹配结果效果图
重要:一定要保证原图与目标图的分辨率一致,不能压缩,简单的办法是使用电脑自带的画图工具来抠去目标图。
-
引入maven
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>javacv-platform</artifactId>
<version>1.5.3</version>
</dependency>
用的是最新版,只引入这个包即可,但下载需要好久,后来更换为阿里云的仓库地址,快了很多,后期考虑精简依赖。
-
具体实现
package com.hilbp.web.controller;
import static org.bytedeco.opencv.global.opencv_imgproc.cvtColor;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
import org.bytedeco.javacpp.DoublePointer;
import org.bytedeco.javacpp.indexer.FloatIndexer;
import org.bytedeco.opencv.global.opencv_core;
import org.bytedeco.opencv.global.opencv_highgui;
import org.bytedeco.opencv.global.opencv_imgcodecs;
import org.bytedeco.opencv.global.opencv_imgproc;
import org.bytedeco.opencv.opencv_core.Mat;
import org.bytedeco.opencv.opencv_core.Point;
import org.bytedeco.opencv.opencv_core.Rect;
import org.bytedeco.opencv.opencv_core.Scalar;
import org.bytedeco.opencv.opencv_core.Size;
import lombok.extern.slf4j.Slf4j;
@Slf4j
public class ImageTest {
public void test() {
String[] args = new String[2];
args[0] = "log/screen.png"; //截屏图片
args[1] = "log/1.png"; //点赞的图标
newStyle(args);
}
public void newStyle(String[] args){
//read in image default colors
Mat sourceColor = opencv_imgcodecs.imread(args[0]);
Mat sourceGrey = new Mat(sourceColor.size(), opencv_core.CV_8UC1);
cvtColor(sourceColor, sourceGrey, opencv_imgproc.COLOR_BGR2GRAY);
//load in template in grey
Mat template = opencv_imgcodecs.imread(args[1], opencv_imgcodecs.IMREAD_GRAYSCALE);//int = 0
//Size for the result image
Size size = new Size(sourceGrey.cols()-template.cols()+1, sourceGrey.rows()-template.rows()+1);
Mat result = new Mat(size, opencv_core.CV_32FC1);
opencv_imgproc.matchTemplate(sourceGrey, template, result, opencv_imgproc.TM_CCORR_NORMED);
// opencv_imgproc.threshold(src, dst, thresh, maxval, ThresholdTypes.Tozero);
// opencv_imgproc.floodFill(image, seedPoint, newVal)
DoublePointer minVal= new DoublePointer();
DoublePointer maxVal= new DoublePointer();
Point min = new Point();
Point max = new Point();
opencv_core.minMaxLoc(result, minVal, maxVal, min, max, null);
// log.info("[{}, {}]", max.x(), max.y());
// opencv_imgproc.rectangle(sourceColor,new Rect(max.x(),max.y(),template.cols(),template.rows()), randColor(), 2, 0, 0);
int centerWith = template.cols() / 2;
int centerHeight = template.rows() / 2;
getPointsFromMatAboveThreshold(result, 0.9999f).stream().forEach((point) -> {
log.info("[{}, {}]", point.x(), point.y());
log.info("[{}, {}]", point.x() + centerWith, point.y() + centerHeight);
opencv_imgproc.rectangle(sourceColor, new Rect(point.x(), point.y(), template.cols(), template.rows()), randColor(), 2, 0, 0);
});
// List<Point> points = this.getPointsFromMatAboveThreshold(result, 0.99f);
// for(Point point : points) {
// opencv_imgproc.rectangle(sourceColor,new Rect(point.x(), point.y(), 30, 30), randColor(), 2, 0, 0);
//
// }
opencv_highgui.imshow("Original marked", sourceColor);
// imshow("Ttemplate", template);
// imshow("Results matrix", result);
opencv_imgcodecs.imwrite("log/res.png", sourceColor);
opencv_highgui.waitKey(0);
opencv_highgui.destroyAllWindows();
}
// some usefull things.
public Scalar randColor(){
int b,g,r;
b= ThreadLocalRandom.current().nextInt(0, 255 + 1);
g= ThreadLocalRandom.current().nextInt(0, 255 + 1);
r= ThreadLocalRandom.current().nextInt(0, 255 + 1);
return new Scalar (b,g,r,0);
}
public List<Point> getPointsFromMatAboveThreshold(Mat m, float t){
List<Point> matches = new ArrayList<Point>();
FloatIndexer indexer = m.createIndexer();
for (int y = 0; y < m.rows(); y++) {
for (int x = 0; x < m.cols(); x++) {
if (indexer.get(y,x) > t) {
//System.out.println("(" + x + "," + y +") = "+ indexer.get(y,x));
matches.add(new Point(x, y));
}
}
}
return matches;
}
}
代码把最佳匹配的代码的注释了,很重要的一点是
getPointsFromMatAboveThreshold(result, 0.9999f)
中的0.9999f
的阈值的设置,这个很重要,多试几次。调低了的话结果可能不准。
代码的一下语句:打印目标图左上角的坐标和计算后的目标图的中心点坐标
log.info("[{}, {}]", point.x(), point.y());
log.info("[{}, {}]", point.x() + centerWith, point.y() + centerHeight);
-
后记
本文重在功能逻辑的实现,关于javacv的学习,由于篇幅限制不予展开。