线性回归总结

本次记录的内容包括几种线性回归的概念以及对比:
L1回归,L2回归,弹性回归。

概念

线性回归通过使用最佳的拟合直线(又被称为回归线),建立因变量(Y)和一个或多个自变量(X)之间的关系。

类型

一元线性回归和多元线性回归的区别在于,多元线性回归有大于 1 个自变量,而一元线性回归只有 1 个自变量。

学习策略

最小二乘
最小二乘法是一种拟合回归线的常用算法。它通过最小化每个数据点与预测直线的垂直误差的平方和来计算得到最佳拟合直线。因为计算的是误差平方和,所以,误差正负值之间没有相互抵消。

我们可以使用指标 R-square 来评估模型的性能

重点

  1. 自变量和因变量之间必须满足线性关系。
  2. 多元回归存在多重共线性,自相关性和异方差性。
    • 多重共线性:
      多重共线性是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。

    • 无自相关性:
      自相关性是指随机误差项的各期望值之间存在着相关关系,随机误差项的自相关性可以有多种形式,其中最常见的类型是随机误差项之间存在一阶自相关性或一阶自回归形式,即随机误差项只与它的前一期值相关。

      如果残差分布具有明显圆润的线性分布图像, 说明自相关性存在的可能性很高。
      反之, 无规则波动大的分布图像显示出弱相关性。

    • 异方差:
      经典线性回归模型的一个重要假定:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。如果这一假定不满足,即:随机误差项具有不同的方差,则称线性回归模型存在异方差性。

线性回归对异常值非常敏感。异常值会严重影响回归线和最终的预测值。
多重共线性会增加系数估计的方差,并且使得估计对模型中的微小变化非常敏感。结果是系数估计不稳定。
在多个自变量的情况下,我们可以采用正向选择、向后消除和逐步选择的方法来选择最重要的自变量。

  1. L1回归和L2回归
  • 除非不假定正态性,二者回归与最小二乘回归的所有假设是一样的。
  • L1回归起到特征选择,如果一组自变量高度相关,那么L1回归只会选择其中一个,而将其余的缩小为零。
  1. 弹性回归
    弹性回归是岭回归和套索回归的混合技术,它同时使用 L2 和 L1 正则化。当有多个相关的特征时,弹性网络是有用的。套索回归很可能随机选择其中一个,而弹性回归很可能都会选择。


○ 在高度相关变量的情况下,它支持群体效应。
○ 它对所选变量的数目没有限制
○ 它具有两个收缩因子 λ1 和 λ2

总结:线性回归中的几个重要假设

○ 随机误差项是一个期望值或平均值为0的随机变量;
○ 对于解释变量的所有观测值,随机误差项有相同的方差;
○ 随机误差项彼此不相关;
○ 解释变量是确定性变量,不是随机变量,与随机误差项彼此之间相互独立;
○ 解释变量之间不存在精确的(完全的)线性关系,即解释变量的样本观测值矩阵是满秩矩阵;
○ 随机误差项服从正态分布

  • 当违背上述假设时:
    违背基本假设的计量经济学模型还是可以估计的,只是不能使用普通最小二乘法进行估计。
    当存在异方差时,普通最小二乘法估计存在以下问题: 参数估计值虽然是无偏的,但不是最小方差线性无偏估计。

转载注明:https://www.jianshu.com/p/86edec219fbb

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354