Python中的优化:惰性求值详解

惰性求值,也就是延迟求值,表达式不会在它被绑定到变量之后就立即求值,而是等用到时再求值。这个特性可以解决一些巨大甚至无限的集合列表,如菲波那切数列、几十G的文件等等。延迟求值的一个好处是能够建立可计算的无限列表而没有妨碍计算的无限循环或大小问题。

Python 中的很多方法没有直接返回列表,而是返回了一个可迭代的generator (生成器)对象,这便是python的惰性求值,因为在创建一个很大的列表时,对内存的开销非常大,太大时python会直接报错,举个🌰:range()方法是产生一个指定范围列表,在Python3之前,该方法直接产生一个列表,xrange() 产生一个生成器:

>>> xrange(100)
xrange(100)
>>> range(100)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

当参数里面的值足够大时,range()产生了一个巨大的列表,这是内存会吃不消,等待一段时间后程序会直接被Kill掉:

>>> for i in range(999999999999):
...     print i
... 
Killed: 9
占满内存

用xrange() 方法就不回出现这种问题,并且可以一直运行:

>>> for i in xrange(999999999999):
...     print i
... 
0
1
2
3
4
5
6
7
8
9
10...

在Python3中range已经被改为了xrange,所以在python3中可以放心使用range().

惰性求值不要求你事先准备好整个迭代过程中所有的元素。迭代器仅仅在迭代至某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁
还有前文所说的list comprehension语句,在两边放上[],会产生别表,如果数据源很长则会报内存错误:

>>> print [i for i in range(9999999999999999)]
Python(1627,0x7fffe5b713c0) malloc: *** mach_vm_map(size=80000000000000000) failed (error code=3)
*** error: can't allocate region
*** set a breakpoint in malloc_error_break to debug
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
MemoryError

这样直接产生列表没有效率,为了创建生成器对象,可以在list comprehension两边放上(),这样它就有了惰性求值的特性。

>>> print((i for i in range(99999999999999)))
<generator object <genexpr> at 0x106e29f10>

使用next()内建函数访问生成器里的元素:

num = (i for i in range(5))
>>> num
<generator object <genexpr> at 0x106e89048>
>>> next(num)
0
>>> next(num)
1
>>> for j in range(4):
...     print(next(num))
... 
2
3
4
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
StopIteration

当访问到最后元素时,再调用next(),Python将会抛出StopIteration异常。Python正是根据是否检查到这个异常来决定是否停止迭代。

step1 = someLongOperation1()
step2 = someLongOperation2()
step3 = concatenate(step1, step2)

以上代码需要分别执行一二两步操作,第三步用到一二两步的结果,在Pyhton中会有序的执行这些函数:首先是 someLongOperation1,然后 someLongOperation2,最后 concatenate,如果确保没有函数修改或依赖于全局变量,第一二步可以被并行执行。假设我们不想并行运行这两个函数,我们只在其他函数依赖于 step1 和 step2 时才需要执行这两个函数。我们甚至在 concatenate 调用之前都不必执行他们,可以把他们的求值延迟到 concatenate 函数内实际用到他们的位置。如果函数中用到了if分支语句,条件无关step1和step2则可以尽量将判断条件放前面以减少不必要的计算:

step1 = someLongOperation1()
step2 = someLongOperation2()
if condition:
   step3 = concatenate(step1, step2)
换为:
if condition:
    step1 = someLongOperation1()
    step2 = someLongOperation2()
    step3 = concatenate(step1, step2)

如果 concatenate 是一个带有条件分支的函数并且有的分支中只用了两个参数中的一个,另一个参数就永远没有必要被求值。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容