Qiime1-14.利用监督学习进行分类

机器学习是一种目前流行且使用的生物信息分析方法。本节我们将基于菌群的丰度利用机器学习的方法建立分类器,对样本进行分类。

在运行命令之前,建议使用样本深度在1000左右的样本和稀疏表。此外,还可以使用多个不同的稀疏表来避免因仅采用单个稀疏表而引入的错误。选择一个包含多个样本的合适的稀疏深度非常重要,但通常来讲这样确定的稀疏深度值相对较高。所以,我们通常可以将中值作为采样深度。

稀疏表的生成

单个稀疏表(一个深度) Single Rarefaction

# Single Rarefaction
 single_rarefaction.py \
 -i otu_table.biom \
 -o otu_table_even100.biom \
 -d 1000

多个稀疏表(同一深度) Multiple rarefactions

# Multiple Rarefactions
multiple_rarefactions_even_depth.py \
-i otu_table.biom \
-o rarefied_otu_tables/ \
-d 100 \
-n 10

监督学习

supervised_learning.py \
-i otu_table.biom \
-o supervised_output \
-m mapping_file.txt \
-c SampleType \
--errortype oob \
--ntree 1000

部分参数讲解:
--category | -c metadata文件中用于对样本进行分组、最终绘图时作为x轴的变量名称

--errortype | -e在进行分类时错误估计的类型。有以下几种选择:oob, loo, cv5, cv10. oob: out-of-bag, fastest,默认为oob。
oob: 快速,用于只建立一个分类器的时候,需要快速计算错误估计值。
cv5-5-fold cross validation:提供错误的平均值和标准,适合大样本的估计,更为准确。
cv10-10-fold cross validation:会提供错误的平均值和标准差,最为准确。
loo-leave-one-out cross validation,:用于小样本(通常在30-50个样本左右)
--ntree | -n 用于建立分类器的树的树木。通常来讲越多分类器的效果越好,但是越多就需要更久的运算时间,所以需要选择一个合适的值。

生成文件
cv_probabilities.txt: the label probabilities for each of the given samples. (if available)
mislabeling.txt: A convenient presentation of cv_probabilities for mislabeling detection.
confusion_matrix.txt: confusion matrix for hold-out predictions.
summary.txt: a summary of the results, including the expected generalization error of the classifier
feature_importance_scores.txt: a list of discriminative OTUs with their associated importance scores (if available)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容