FFT 算法

FFT即Fast Fourier Transform,中文翻译:快速傅立叶算法。下面是网上找到的算法实现。留以备用。

/******************************************************************************
 *  Compilation:  javac FFT.java
 *  Execution:    java FFT n
 *  Dependencies: Complex.java
 *
 *  Compute the FFT and inverse FFT of a length n complex sequence.
 *  Bare bones implementation that runs in O(n log n) time. Our goal
 *  is to optimize the clarity of the code, rather than performance.
 *
 *  Limitations
 *  -----------
 *   -  assumes n is a power of 2
 *
 *   -  not the most memory efficient algorithm (because it uses
 *      an object type for representing complex numbers and because
 *      it re-allocates memory for the subarray, instead of doing
 *      in-place or reusing a single temporary array)
 *
 ******************************************************************************/

public class FFT {

    // compute the FFT of x[], assuming its length is a power of 2
    public static Complex[] fft(Complex[] x) {
        int n = x.length;

        // base case
        if (n == 1) return new Complex[] { x[0] };

        // radix 2 Cooley-Tukey FFT
        if (n % 2 != 0) { throw new RuntimeException("n is not a power of 2"); }

        // fft of even terms
        Complex[] even = new Complex[n/2];
        for (int k = 0; k < n/2; k++) {
            even[k] = x[2*k];
        }
        Complex[] q = fft(even);

        // fft of odd terms
        Complex[] odd  = even;  // reuse the array
        for (int k = 0; k < n/2; k++) {
            odd[k] = x[2*k + 1];
        }
        Complex[] r = fft(odd);

        // combine
        Complex[] y = new Complex[n];
        for (int k = 0; k < n/2; k++) {
            double kth = -2 * k * Math.PI / n;
            Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
            y[k]       = q[k].plus(wk.times(r[k]));
            y[k + n/2] = q[k].minus(wk.times(r[k]));
        }
        return y;
    }


    // compute the inverse FFT of x[], assuming its length is a power of 2
    public static Complex[] ifft(Complex[] x) {
        int n = x.length;
        Complex[] y = new Complex[n];

        // take conjugate
        for (int i = 0; i < n; i++) {
            y[i] = x[i].conjugate();
        }

        // compute forward FFT
        y = fft(y);

        // take conjugate again
        for (int i = 0; i < n; i++) {
            y[i] = y[i].conjugate();
        }

        // divide by n
        for (int i = 0; i < n; i++) {
            y[i] = y[i].scale(1.0 / n);
        }

        return y;

    }

    // compute the circular convolution of x and y
    public static Complex[] cconvolve(Complex[] x, Complex[] y) {

        // should probably pad x and y with 0s so that they have same length
        // and are powers of 2
        if (x.length != y.length) { throw new RuntimeException("Dimensions don't agree"); }

        int n = x.length;

        // compute FFT of each sequence
        Complex[] a = fft(x);
        Complex[] b = fft(y);

        // point-wise multiply
        Complex[] c = new Complex[n];
        for (int i = 0; i < n; i++) {
            c[i] = a[i].times(b[i]);
        }

        // compute inverse FFT
        return ifft(c);
    }


    // compute the linear convolution of x and y
    public static Complex[] convolve(Complex[] x, Complex[] y) {
        Complex ZERO = new Complex(0, 0);

        Complex[] a = new Complex[2*x.length];
        for (int i = 0;        i <   x.length; i++) a[i] = x[i];
        for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;

        Complex[] b = new Complex[2*y.length];
        for (int i = 0;        i <   y.length; i++) b[i] = y[i];
        for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;

        return cconvolve(a, b);
    }

    // display an array of Complex numbers to standard output
    public static void show(Complex[] x, String title) {
        System.out.println(title);
        System.out.println("-------------------");
        for (int i = 0; i < x.length; i++) {
            System.out.println(x[i]);
        }
        System.out.println();
    }


    /***************************************************************************
     *  Test client and sample execution
     *
     *  % java FFT 4
     *  x
     *  -------------------
     *  -0.03480425839330703
     *  0.07910192950176387
     *  0.7233322451735928
     *  0.1659819820667019
     *
     *  y = fft(x)
     *  -------------------
     *  0.9336118983487516
     *  -0.7581365035668999 + 0.08688005256493803i
     *  0.44344407521182005
     *  -0.7581365035668999 - 0.08688005256493803i
     *
     *  z = ifft(y)
     *  -------------------
     *  -0.03480425839330703
     *  0.07910192950176387 + 2.6599344570851287E-18i
     *  0.7233322451735928
     *  0.1659819820667019 - 2.6599344570851287E-18i
     *
     *  c = cconvolve(x, x)
     *  -------------------
     *  0.5506798633981853
     *  0.23461407150576394 - 4.033186818023279E-18i
     *  -0.016542951108772352
     *  0.10288019294318276 + 4.033186818023279E-18i
     *
     *  d = convolve(x, x)
     *  -------------------
     *  0.001211336402308083 - 3.122502256758253E-17i
     *  -0.005506167987577068 - 5.058885073636224E-17i
     *  -0.044092969479563274 + 2.1934338938072244E-18i
     *  0.10288019294318276 - 3.6147323062478115E-17i
     *  0.5494685269958772 + 3.122502256758253E-17i
     *  0.240120239493341 + 4.655566391833896E-17i
     *  0.02755001837079092 - 2.1934338938072244E-18i
     *  4.01805098805014E-17i
     *
     ***************************************************************************/

    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        Complex[] x = new Complex[n];

        // original data
        for (int i = 0; i < n; i++) {
            x[i] = new Complex(i, 0);
            x[i] = new Complex(-2*Math.random() + 1, 0);
        }
        show(x, "x");

        // FFT of original data
        Complex[] y = fft(x);
        show(y, "y = fft(x)");

        // take inverse FFT
        Complex[] z = ifft(y);
        show(z, "z = ifft(y)");

        // circular convolution of x with itself
        Complex[] c = cconvolve(x, x);
        show(c, "c = cconvolve(x, x)");

        // linear convolution of x with itself
        Complex[] d = convolve(x, x);
        show(d, "d = convolve(x, x)");
    }

}
/******************************************************************************
 *  Compilation:  javac Complex.java
 *  Execution:    java Complex
 *
 *  Data type for complex numbers.
 *
 *  The data type is "immutable" so once you create and initialize
 *  a Complex object, you cannot change it. The "final" keyword
 *  when declaring re and im enforces this rule, making it a
 *  compile-time error to change the .re or .im instance variables after
 *  they've been initialized.
 *
 *  % java Complex
 *  a            = 5.0 + 6.0i
 *  b            = -3.0 + 4.0i
 *  Re(a)        = 5.0
 *  Im(a)        = 6.0
 *  b + a        = 2.0 + 10.0i
 *  a - b        = 8.0 + 2.0i
 *  a * b        = -39.0 + 2.0i
 *  b * a        = -39.0 + 2.0i
 *  a / b        = 0.36 - 1.52i
 *  (a / b) * b  = 5.0 + 6.0i
 *  conj(a)      = 5.0 - 6.0i
 *  |a|          = 7.810249675906654
 *  tan(a)       = -6.685231390246571E-6 + 1.0000103108981198i
 *
 ******************************************************************************/

import java.util.Objects;

public class Complex {
    private final double re;   // the real part
    private final double im;   // the imaginary part

    // create a new object with the given real and imaginary parts
    public Complex(double real, double imag) {
        re = real;
        im = imag;
    }

    // return a string representation of the invoking Complex object
    public String toString() {
        if (im == 0) return re + "";
        if (re == 0) return im + "i";
        if (im <  0) return re + " - " + (-im) + "i";
        return re + " + " + im + "i";
    }

    // return abs/modulus/magnitude
    public double abs() {
        return Math.hypot(re, im);
    }

    // return angle/phase/argument, normalized to be between -pi and pi
    public double phase() {
        return Math.atan2(im, re);
    }

    // return a new Complex object whose value is (this + b)
    public Complex plus(Complex b) {
        Complex a = this;             // invoking object
        double real = a.re + b.re;
        double imag = a.im + b.im;
        return new Complex(real, imag);
    }

    // return a new Complex object whose value is (this - b)
    public Complex minus(Complex b) {
        Complex a = this;
        double real = a.re - b.re;
        double imag = a.im - b.im;
        return new Complex(real, imag);
    }

    // return a new Complex object whose value is (this * b)
    public Complex times(Complex b) {
        Complex a = this;
        double real = a.re * b.re - a.im * b.im;
        double imag = a.re * b.im + a.im * b.re;
        return new Complex(real, imag);
    }

    // return a new object whose value is (this * alpha)
    public Complex scale(double alpha) {
        return new Complex(alpha * re, alpha * im);
    }

    // return a new Complex object whose value is the conjugate of this
    public Complex conjugate() {
        return new Complex(re, -im);
    }

    // return a new Complex object whose value is the reciprocal of this
    public Complex reciprocal() {
        double scale = re*re + im*im;
        return new Complex(re / scale, -im / scale);
    }

    // return the real or imaginary part
    public double re() { return re; }
    public double im() { return im; }

    // return a / b
    public Complex divides(Complex b) {
        Complex a = this;
        return a.times(b.reciprocal());
    }

    // return a new Complex object whose value is the complex exponential of this
    public Complex exp() {
        return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
    }

    // return a new Complex object whose value is the complex sine of this
    public Complex sin() {
        return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
    }

    // return a new Complex object whose value is the complex cosine of this
    public Complex cos() {
        return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
    }

    // return a new Complex object whose value is the complex tangent of this
    public Complex tan() {
        return sin().divides(cos());
    }



    // a static version of plus
    public static Complex plus(Complex a, Complex b) {
        double real = a.re + b.re;
        double imag = a.im + b.im;
        Complex sum = new Complex(real, imag);
        return sum;
    }

    // See Section 3.3.
    public boolean equals(Object x) {
        if (x == null) return false;
        if (this.getClass() != x.getClass()) return false;
        Complex that = (Complex) x;
        return (this.re == that.re) && (this.im == that.im);
    }

    // See Section 3.3.
    public int hashCode() {
        return Objects.hash(re, im);
    }

    // sample client for testing
    public static void main(String[] args) {
        Complex a = new Complex(5.0, 6.0);
        Complex b = new Complex(-3.0, 4.0);

        System.out.println("a            = " + a);
        System.out.println("b            = " + b);
        System.out.println("Re(a)        = " + a.re());
        System.out.println("Im(a)        = " + a.im());
        System.out.println("b + a        = " + b.plus(a));
        System.out.println("a - b        = " + a.minus(b));
        System.out.println("a * b        = " + a.times(b));
        System.out.println("b * a        = " + b.times(a));
        System.out.println("a / b        = " + a.divides(b));
        System.out.println("(a / b) * b  = " + a.divides(b).times(b));
        System.out.println("conj(a)      = " + a.conjugate());
        System.out.println("|a|          = " + a.abs());
        System.out.println("tan(a)       = " + a.tan());
    }

}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容