机器学习-多元线性回归

A. 用途:

可以用来预测,由多种因素影响的结果。

B. 建立公式:

C. 求解方法:

方法1. Gradient Descent:

技巧:

技巧1. Feature Scaling:
何时用:

当各个变量的值域或者数量级相差比较大时,
需要将各个变量的值域变换到相似的水平,
变换后,Gradient Descent 就可以更快地下降。

为什么要用:

不用的话,J 关于 Theta 的形状就会非常扁,Gradient 就会来回摆动,就需要更长的时间才能找到最小值。

所以就要做Feature Scaling:

怎么用:

1.除以值域范围:

2.或者,先减平均值,再除以值域范围:

之后,这个形状就会比较正规,Gradient 就可以比较快地找到全局最小值。

技巧2. Learning Rate:

如何确认Gradient Descent是在正确地进行?
如何选择Alpha?

1. 如何确认Gradient Descent是在正确地进行?

数学家们已经证明,当Alpha足够小,J就会每次迭代后都下降。

所以,就可以画图,横轴是迭代的次数,纵轴是cost function的值:
如果是正确的话,那么每次都用迭代后得到的Theta代入J,J应该是下降的。

如果曲线是上升的,说明Gradient Descent用错了,此时需要将Alpha调小。

因为Alpha较大的话,就会过头而错过最小值,进而表现越来越差,造成曲线是上升的:

但是当Alpha太小的话,收敛就会很慢。

补充:
到底需要多少次迭代才会收敛,是与算法和数据有关的。

自动检测是否收敛的方法:
但是这个阈值是很难去确定的。


2. 如何选择Alpha?
在实践中:
可以尝试一系列Alpha的值,0.001,0.01,0.1,1等。

技巧3. 如何选Feature?

在实践中:
你可以不只是用给定的因素,而是通过思考,看哪些因素也是影响预测目标的原因,或者由原始的因素间,进行加减乘除等运算,自己构建Feature。
有一种比较普遍的构建方法,就是多项式。

后续会介绍一些算法,是用来自动选择Feature的。

方法2. Normal Equation

它是另一种求解最小值的方法,是通过分析的方式,而不是迭代。

根据线性代数的知识,得到Theta的求解公式:

m个Sample数据,n个Feature,那么Design Matrix的维度就是 m*(n+1)。

当 X`X 不可逆的时候,该怎么办?
造成不可逆的原因可能主要有两个:
一个是变量间具有相关性,比如一个变量以线性相关关系的形式被用作两个变量。
另一个原因是用了太多的Feature,就是m<=n时,比如说只用10个Sample去做101个Feature的预测。

这两种情况下的解决方案就是,要么删掉一些Feature,要么采用Regularization,后续。

D. 两种方法比较

用 Normal Equation 的话,就不用做 Feature Scaling 了。

当 Feature 有很多,成千上百万的时候,Gradient Descent 也仍然有效,但是 Normal Equation 因为要计算矩阵的转置,乘积,还有逆,就不适用于这样的数量级的计算。一般在 1000 级别的还可以用 Normal Equation。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容