Brown运动的研究历史悠久,英国学家Robert Brown于1827年通过显微镜研究花粉在液体中的运动就意识到,具有随机性和不规则性的运动在自然界普遍存在,Brown运动由此得名。它是显示中经常遇到的Gauss过程,结构独特,兼具Gauss过程、Markov过程,鞅过程等基本随机模型的特性,性质非常丰富,可以从许多方面对它进行研究。由于该运动的复杂性,这里也只是说明一下它的基本性质,目的在于对它有一点粗浅的理解,更深层次的等以后碰到了再进行挖掘吧。
在引出Brown运动以前,首先说明一下什么叫做正交增量过程。
正交增量过程
定义:对于二阶矩过程,如果对于满足
则该过程就称为正交增量过程。定义表明了,正交增量过程在不同的时段的增量彼此正交,它与相关运算相互联系。
假设在t为0的时刻,X(0)=0,那么可以得到正交增量过程的自相关
由于该过程是正交增量过程,所有前面一项的统计均值为0,得到,这里的时间是假设是s<t的,如果是t<s则结果是对X(t)的平方求均值,可以将该结果进行总结,为:
这是正交增量过程具有的独特的性质,也是X(t)是正交增量的充要条件。可以看到该过程的相关函数与时间有关,并不是与t-s有关,可以得出正交增量过程并不是一个宽平稳随机过程。Brown运动就是一个正交增量过程。
Brown Motion
定义:如果实值随机过程满足以下三个条件:
(1)B(t)是正交增量过程,B(0)=0;
(2)它的每一条样本轨道都是连续的;
(3)对于任意的时间t,服从均值为0,方差为的高斯分布,对于。
则称它为标准布朗运动。
注意:对于任意的
对于它的自相关函数来说,它的值为:
——Brown运动的导数相关
对布朗运动求导,设,对其进行互相关的计算:
对min(t,s)直接求导不好操作,可以将其转化为,对该式求二阶导前面的s+t都为0,只剩下,对这个绝对值怎么求导呢?将展开为:
将其对t进行求导为:
这个就是广义函数sgn(x),当x>0时为1,x<0时为-1,可以写成,其中为阶跃函数,阶跃函数的导数为冲激函数,那么广义函数的导数就是,这里的,所以布朗运动导数的自相关函数为:
可以看到布朗运动的导数相关函数为冲激函数(白噪声),可以看到该相关函数的值只与t-s相关,与起始位置没有关系,那么可以得出布朗运动的趋势是不平稳的,但是它上面的毛刺确实平稳的。这与之前的理解有些不大一样,一般人都会认为月平稳随机性越弱,但这个例子恰恰表明了越平稳越随机。
——Brown运动的“二次变差”性质
Brown运动具有所谓的“二次变差”性质,由
推导出该性质。考虑[0,t]之间有这样的划分,当时,分化的长度满足:
则在均方意义下:
这个结果可以得到一个很有意义的推论:
当时
这说明在任意短的时间t内,的变差是无穷大的。这说明了Brown运动的样本轨道很不规则,也表明无法在通常的意义下来定义积分
由于布朗运动样本轨道的局部性质的特殊性(Brown运动的样本轨道是处处不可微的,具有分形特性的奇异曲线)。由于微分和积分的特殊性,有专门的理论来研究它,这里就介绍一个公式。
——公式
首先固定一个点,之后考虑一个常微分方程:
(ODE)
b是给定的的向量场,结果是一条光滑的轨迹。这里就是对在时间t大于0的时候求导。然而现实中测出的轨迹不像预测的那样准确,会有波动,如下图所示:
所以这个常微分方程在某种程度上应该加上随机效应来当做扰动模型。一个正式的写法如下:
其中的矩阵,是m维的白噪声。由于篇幅的问题,这里的数学问题就不考虑了,重要的是我也不懂,直接往下走。如之前证明的,布朗运动的导数相关为冲激函数(白噪声),可以得到;
因此插入白噪声其实就相当于带入对维纳过程的导数,所以加入噪声之后的随机微分方程可以写成;
所以可以得到随机微分方程:
以上都是在n维的情况下的,现在我们讨论在一维的情况下,这就是Ito公式:
对于对它求导为:
由于为,所以为
上面的求导公式应该展开到二阶项才会有dt这一项,所以:
这就是Ito公式。根据该公式可以对Brown运动求导。
例:比如对求导,根据Ito公式可得:
参考资料
《随机过程及其应用》(第二版)陆大絟 张颢
《AN INTRODUCTION TO STOCHASTIC DIFFERENTIAL EQUATIONS VERSION 1.2》 Lawrence C. Evans Department of Mathematics UC Berkeley