(十)PCA降维算法

一.前言

主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。它可以通过线性变换将原始数据变换为一组各维度线性无关的表示,以此来提取数据的主要线性分量。需要注意的是,PCA一般只用于线性数据降维,对于非线性数据一般采用KPCA。

二. PCA的基本思想

降维就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据,并且希望损失尽可能的小。首先看几张图,有一个直观的认识。
这里面,把椭圆看成是数据:


如果我们单独看某一个维度的话,比如看x1这个维度:

可以看到将点投影到x1这个维度上看的话,图1的数据离散性最高,图3居中,图2数据离散性是最低的。数据离散性越大,代表数据在所投影的维度上具有越高的区分度,这个区分度就是信息量。如果数据区分度不高,好多不同的点投影成了一个点,那么就发生了数据损失。如果我们用方差来形容数据的离散性的话,就是数据方差越大,表示数据的区分度越高,也就是蕴含的信息量是越大的。

基于这个知识,如果我们想对数据进行降维的话,比如图1的两个维度的数据降成一维,我们可以选择保留X1这个维度的数据,因为在这个维度上蕴含的信息量更多。同理,图2就可以保留x2这个维度的数据。但是,问题来了,图3应该保留哪个维度的数据呢?答案是保留哪个维度都不好,都会丢失较大的信息量。但是,如果我们把图3的坐标轴旋转一下



比较容易看出,图3在新的坐标轴下就能进行降维了。
所以,第一,变换正确的坐标轴(基);第二,保留方差最大的几个轴作为主成分,这样的做法就是PCA的核心思想。

三. PCA的深入理解

1. 如何变换到新的坐标轴

从前文可以看出,理想的坐标轴是要求数据投在新坐标轴后,尽可能的分散,也就是数据的方差最大。然后每次选择方差最大的轴作为主成分。
将前文2维降1维的例子扩展到更高维度,还有一个问题需要解决,考虑三维降到二维问题。与之前相同,首先我们希望找到一个方向使得投影后方差最大,这样就完成了第一个方向的选择,继而我们选择第二个投影方向。如果我们还是单纯只选择方差最大的方向,很明显,这个方向与第一个方向应该是“几乎重合在一起”,显然这样的维度是没有用的,因为发生了大量的信息重复,起不到降维的作用,因此,应该有其他约束条件——就是正交。PCA要求轴与轴之间是正交的,也就是不同维度的信息相关性为0。

  • 协方差

在表示相关性中,相关系数与协方差是等价的,这里为了方便计算,使用协方差。下面是协方差公式,当协方差为0时,表示两个特征a,b线性不相关。


可以发现,当a=b时,协方差公式就变成了方差公式,方差是特殊的协方差。如果运气更好,特征a与b的平均数都为0,那么公式会进一步简化,得到:


所以说,为了计算方便,PCA降维前,一般都要求将所有特征属性中心化,即平均数为0。

  • 协方差矩阵

因为PCA要求,同一轴内方差最大,不同轴协方差为0,如何把它们放在一块呢?这里就引入了协方差矩阵的概念:
假设有m个样本,每个样本特征维度是2,每个特征都经过中心化处理:


协方差矩阵就是:

这里需要注意,矩阵X的每个列向量都是一个样本,X乘以X的转置就相当于特征之间的点积运算(为了计算特征间的协方差),得到的协方差矩阵是一个与特征维度相同的方阵。

我们发现协方差矩阵的对角线是方差,而且是对称矩阵。方差和协方差都放在了一个矩阵里面,只需对这个矩阵优化,使它除了对角线的其余元素都为0,就可以了,美滋滋。

  • 矩阵变换

我们知道矩阵乘法,本质上就是一种线性变换的过程。而正交基矩阵的乘法,则是坐标系变换的过程。设原空间的数据为X,协方差矩阵为C,经过正交基矩阵P,得到了新坐标系下的数据Y,即Y=PX。那么新坐标系下的协方差矩阵D是怎样的呢?



我们发现,新旧空间的协方差矩阵是有关系的,而且都和变换矩阵P有关系。问题就转化成了,能不能找到一个矩阵P,使得新空间下的协方差矩阵的非对角线元素都为0.

  • 矩阵对角化

首先,原始数据矩阵X的协方差矩阵C是一个实对称矩阵,它有特殊的数学性质:

  1. 实对称矩阵不同特征值对应的特征向量必然正交。
  2. 设特征值λ 重数为r,则必然存在r个线性无关的特征向量对应于λ,因此可以将这r个特征向量单位正交化。
  3. 一个n阶的实对称矩阵一定可以找到n个单位正交特征向量,使其变成对角矩阵。

也就是说,P就是是协方差矩阵的特征向量单位化后按行排列出的矩阵,其中每一行都是C的一个特征向量。如果设P按照中特征值的从大到小,将特征向量从上到下排列,则用P的前K行组成的矩阵乘以原始数据矩阵X,就得到了我们需要的降维后的数据矩阵Y
其实,经过数学上的推导的,我们就可以知道,特征值对应的特征向量就是理想中想取得正确的坐标轴,而特征值就等于数据在旋转之后的坐标上对应维度上的方差。

由于协方差矩阵的维度和特征相同,所以在进行特征值分解时,得到的特征值数目不会超过特征的数目。

四. 从另一个角度理解PCA(参考)

在学习线性代数时,我们都会学矩阵的特征值分解,我们知道一个方阵A经过特征值分解后就得到特征向量特征值了。那么,这个所谓的特征值和特征向量到底是什么东西呢?
很多人都会说是那个经典的式子:


这个式子是如此的简单粗暴,以致于从这个公式来看,给向量x乘上一个矩阵A,只是相当于给这个向量乘上了一个系数λ。偌大一个矩阵A对向量x的作用竟然本质上不过只是和一个小小的数字λ相同而已!!!
所以这个矩阵分解方法到底具有什么样的意义?

首先给出概念上的一种解释。所谓的特征值和特征向量,最重要的是理解“特征”这两个字,特征向量翻译为eigen vector, eigen这个单词来自德语,本义是在“本身固有的,本质的”。纯数学的定义下,并不能很明白地理解到底为什么叫做特征值和特征向量。但是举一个应用例子,可能就容易理解多了。

在图像处理中,有一种方法就是特征值分解。我们都知道图像其实就是一个像素值组成的矩阵,假设有一个100x100的图像,对这个图像矩阵做特征值分解,其实是在提取这个图像中的特征,这些提取出来的特征是一个个的向量,即对应着特征向量。而这些特征在图像中到底有多重要,这个重要性则通过特征值来表示。比如这个100x100的图像矩阵A分解之后,会得到一个100x100的特征向量组成的矩阵Q,以及一个100x100的只有对角线上的元素不为0的矩阵E,这个矩阵E对角线上的元素就是特征值,而且还是按照从大到小排列的(取模,对于单个数来说,其实就是取绝对值),也就是说这个图像A提取出来了100个特征,这100个特征的重要性由100个数字来表示,这100个数字存放在对角矩阵E中。在实际中我们发现,提取出来的这100个特征从他们的特征值大小来看,大部分只有前20(这个20不一定,有的是10,有的是30或者更多)个特征对应的特征值很大,后面的就都是接近0了,也就是说后面的那些特征对图像的贡献几乎可以忽略不计。

我们知道,图像矩阵A特征值分解后可以得到矩阵P和矩阵E(特征值对角矩阵):


所以,根据特征值与特征向量,也能还原回图像A。既然已经知道了矩阵E中只有前20个特征值比较重要,那么我们不妨试试把E中除了前20个后面的都置为0,即只取图像的前20个主要特征来恢复图像,剩下的全部舍弃,看看此时会发生什么:
原图


我们可以看到,在只取前20个特征值和特征向量对图像进行恢复的时候,基本上已经可以看到图像的大体轮廓了,而取到前50的时候,几乎已经和原图像无异了。明白了吧,这就是所谓的矩阵的特征向量和特征值的作用。

所以归根结底,特征向量其实反应的是矩阵A本身固有的一些特征,本来一个矩阵就是一个线性变换,当把这个矩阵作用于一个向量的时候,通常情况绝大部分向量都会被这个矩阵A变换得“面目全非”,但是偏偏刚好存在这么一些向量,被矩阵A变换之后居然还能保持原来的样子,于是这些向量就可以作为矩阵的核心代表了。于是我们可以说:一个变换(即一个矩阵)可以由其特征值和特征向量完全表述,这是因为从数学上看,这个矩阵所有的特征向量组成了这个向量空间的一组基底。而矩阵作为变换的本质其实不就把一个基底下的东西变换到另一个基底表示的空间中么?

五. 总结一下PCA算法的计算过程

  1. 去除平均值,进行中心化。
  2. 计算协方差矩阵
  3. 计算协方差矩阵的特征值和特征向量
  4. 将特征相量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P
  5. Y=PX 得到降维后的数据Y

参考:
https://blog.csdn.net/hjq376247328/article/details/80640544
https://blog.csdn.net/hustqb/article/details/78394058
https://blog.csdn.net/woainishifu/article/details/76418176

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容

  • 今天读情绪安定愉快!鼓励幼儿学会合理表达情绪,以不伤害自己和别人的方式宣泄不良情绪!
    LSHDJS阅读 147评论 0 0
  • 已进入冬季,红叶掉落,却有丝线与枝干相连,随风飘动,尤如不落的红叶,是对秋的依恋还是不舍曾经的自我。
    洛阳老晋阅读 448评论 2 1