Hive的复杂数据类型

复杂数据类型:array、map、struct
1.数组array,里边不能装不同类型的数据

[hadoop@hadoop001 data]$ more hive_array.txt 
zhangsan        beijing,shanghai,tianjin,hangzhou
lisi    changchun,chengdu,wuhan,beijing

hive> create table hive_array(name string, work_locations array<string>)
    > row format delimited fields terminated by '\t'
    > collection items terminated by ',';
OK
Time taken: 2.805 seconds

hive> desc formatted hive_array;
OK
# col_name              data_type               comment             
                 
name                    string                                      
work_locations          array<string>                               
                 
# Detailed Table Information             
Database:               default                  
Owner:                  hadoop                   
CreateTime:             Sun Jul 29 16:13:14 CST 2018     
LastAccessTime:         UNKNOWN                  
Protect Mode:           None                     
Retention:              0                        
Location:               hdfs://192.168.137.141:9000/user/hive/warehouse/hive_array       
Table Type:             MANAGED_TABLE            
Table Parameters:                
        transient_lastDdlTime   1532851994          
                 
# Storage Information            
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe       
InputFormat:            org.apache.hadoop.mapred.TextInputFormat         
OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat       
Compressed:             No                       
Num Buckets:            -1                       
Bucket Columns:         []                       
Sort Columns:           []                       
Storage Desc Params:             
        colelction.delim        ,                   
        field.delim             \t                  
        serialization.format    \t                  
Time taken: 1.022 seconds, Fetched: 29 row(s)

hive> load data local inpath '/home/hadoop/data/hive_array.txt' 
    > overwrite into table hive_array;
Loading data to table default.hive_array
Table default.hive_array stats: [numFiles=1, numRows=0, totalSize=81, rawDataSize=0]
OK
Time taken: 3.108 seconds

hive> select * from hive_array;
OK
ruoze   ["beijing","shanghai","tianjin","hangzhou"]
jepson  ["changchun","chengdu","wuhan","beijing"]
Time taken: 1.196 seconds, Fetched: 2 row(s)

hive> select name, size(work_locations) from hive_array;
OK
ruoze   4
jepson  4
Time taken: 0.453 seconds, Fetched: 2 row(s)

hive> select name, work_locations[0] from hive_array;
OK
ruoze   beijing
jepson  changchun
Time taken: 0.145 seconds, Fetched: 2 row(s)

hive> select * from hive_array where array_contains(work_locations, "tianjin");
OK
ruoze   ["beijing","shanghai","tianjin","hangzhou"]
Time taken: 0.198 seconds, Fetched: 1 row(s)

2.map Map('a'#1,'b'#2)

[hadoop@hadoop001 data]$ more hive_map.txt 
1,zhangsan,father:xiaoming#mother:xiaohuang#brother:xiaoxu,28
2,lisi,father:mayun#mother:huangyi#brother:guanyu,22
3,wangwu,father:wangjianlin#mother:ruhua#sister:jingtian,29
4,mayun,father:mayongzhen#mother:angelababy,26

hive> create table hive_map(id int,name string, family map<string,string>,age int)
    > row format delimited fields terminated by ','
    > collection items terminated by '#'
    > map keys terminated by ':';
OK
Time taken: 0.176 seconds

hive> desc formatted hive_map;
OK
# col_name              data_type               comment             
                 
id                      int                                         
name                    string                                      
family                  map<string,string>                          
age                     int                                         
                 
# Detailed Table Information             
Database:               default                  
Owner:                  hadoop                   
CreateTime:             Sun Jul 29 17:08:48 CST 2018     
LastAccessTime:         UNKNOWN                  
Protect Mode:           None                     
Retention:              0                        
Location:               hdfs://192.168.137.141:9000/user/hive/warehouse/hive_map         
Table Type:             MANAGED_TABLE            
Table Parameters:                
        transient_lastDdlTime   1532855328          
                 
# Storage Information            
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe       
InputFormat:            org.apache.hadoop.mapred.TextInputFormat         
OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat       
Compressed:             No                       
Num Buckets:            -1                       
Bucket Columns:         []                       
Sort Columns:           []                       
Storage Desc Params:             
        colelction.delim        #                   
        field.delim             ,                   
        mapkey.delim            :                   
        serialization.format    ,                   
Time taken: 0.177 seconds, Fetched: 32 row(s)

hive> load data local inpath '/home/hadoop/data/hive_map.txt' 
    > overwrite into table hive_map;
Loading data to table default.hive_map
Table default.hive_map stats: [numFiles=1, numRows=0, totalSize=224, rawDataSize=0]
OK
Time taken: 0.48 seconds

hive> select * from hive_map;
OK
1       zhangsan        {"father":"xiaoming","mother":"xiaohuang","brother":"xiaoxu"}   28
2       lisi    {"father":"mayun","mother":"huangyi","brother":"guanyu"}        22
3       wangwu  {"father":"wangjianlin","mother":"ruhua","sister":"jingtian"}   29
4       mayun   {"father":"mayongzhen","mother":"angelababy"}   26
Time taken: 0.113 seconds, Fetched: 4 row(s)

hive> select id,name,family['father'] as father, family['sister'] from hive_map;
OK
1       zhangsan        xiaoming        NULL
2       lisi    mayun   NULL
3       wangwu  wangjianlin     jingtian
4       mayun   mayongzhen      NULL
Time taken: 0.138 seconds, Fetched: 4 row(s)

hive> select id,name,map_keys(family) from hive_map;
OK
1       zhangsan        ["father","mother","brother"]
2       lisi    ["father","mother","brother"]
3       wangwu  ["father","mother","sister"]
4       mayun   ["father","mother"]
Time taken: 0.106 seconds, Fetched: 4 row(s)

hive> select id,name,map_values(family) from hive_map;
OK
1       zhangsan        ["xiaoming","xiaohuang","xiaoxu"]
2       lisi    ["mayun","huangyi","guanyu"]
3       wangwu  ["wangjianlin","ruhua","jingtian"]
4       mayun   ["mayongzhen","angelababy"]
Time taken: 0.106 seconds, Fetched: 4 row(s)

hive> select id,name,size(family) from hive_map;
OK
1       zhangsan        3
2       lisi    3
3       wangwu  3
4       mayun   2
Time taken: 0.182 seconds, Fetched: 4 row(s)

hive> select id,name,family['brother'] from hive_map where array_contains(map_keys(family),'brother');
OK
1       zhangsan        xiaoxu
2       lisi    guanyu
Time taken: 0.118 seconds, Fetched: 2 row(s)

3.struct结构体

//原始数据
[hadoop@hadoop001 data]$ cat hive_struct.txt 
192.168.1.1#zhangsan:40
192.168.1.2#lisi:50
192.168.1.3#wangwu:60
192.168.1.4#zhaoliu:70

//建表并导入数据
hive> create table hive_struct(ip string,userinfo struct<name:string,age:int>)
    > row format delimited fields terminated by '#'
    > collection items terminated by ':';
OK
Time taken: 0.136 seconds

hive> load data local inpath '/home/hadoop/data/hive_struct.txt' 
    > overwrite into table hive_struct;
Loading data to table default.hive_struct
Table default.hive_struct stats: [numFiles=1, numRows=0, totalSize=91, rawDataSize=0]
OK
Time taken: 0.573 seconds

hive> select * from hive_struct;
OK
192.168.1.1     {"name":"zhangsan","age":40}
192.168.1.2     {"name":"lisi","age":50}
192.168.1.3     {"name":"wangwu","age":60}
192.168.1.4     {"name":"zhaoliu","age":70}
Time taken: 0.123 seconds, Fetched: 4 row(s)

//取值
hive> select ip,userinfo.name,userinfo.age from hive_struct;
OK
192.168.1.1     zhangsan        40
192.168.1.2     lisi    50
192.168.1.3     wangwu  60
192.168.1.4     zhaoliu 70
Time taken: 0.111 seconds, Fetched: 4 row(s)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容