Python---试除法求质数的三种方式对比

此三种方法都是基于试除法,即不断地尝试能否整除。比如要判断自然数 x 是否质数,就不断尝试小于 x 且大于1的自然数,只要有一个能整除,则 x 是合数;否则,x 是质数。

方式1:从 2 一直尝试到 x-1。
方式2:从 2 一直尝试到 x/2。
方式3:从 2 一直尝试到√x。

代码部分

import time
import math
def f1(x):
    a = []
    for i in range(2, x+1):
            for j in range(2, i):
                if i % j == 0:
                    break
            else:
                a.append(i)
    # print(a)
    
def f2(x):
    a = []
    for i in range(2, x+1):
            y = int(i//2+1)
            for j in range(2, y):
                if i % j == 0:
                    break
            else:
                a.append(i)
    # print(a)
    
def f3(x):
    a = []
    for i in range(2, x+1):
            y = int(math.sqrt(i)+1)
            for j in range(2, y):
                if i % j == 0:
                    break
            else:
                a.append(i)
    # print(a)

if __name__ == '__main__':
    t1 = time.clock()
    f1(100)
    t2 = time.clock()
    print('第一种方式所用时间为{}秒'.format(t2-t1))
    t3 = time.clock()
    f2(100)
    t4 = time.clock()
    print('第二种方式所用时间为{}秒'.format(t4-t3))
    t5 = time.clock()
    f3(100)
    t6 = time.clock()
    print('第三种方式所用时间为{}秒'.format(t6-t5))

运行结果

第一种方式所用时间为0.00011377787891367015秒
第二种方式所用时间为0.00010088897856798095秒
第三种方式所用时间为0.0001515556902717247秒

在计算100以内质数时三种方法的运算速度差不多,第二种似乎占据一定优势,那来看一看如果不断增大范围,三种方法的运行速度到底有多大的差别。。。。。。

三种方式差别

显而易见,在范围10000之前,三种方式差别不大,但在10000以后,他们之间的差距呈几何扩大,可得,第三种方法远远快于前两种方法

后续,还可以尝试先将偶数去除(除2以外),再来进行试除,速度一定再上一个台阶,当然求质数还有其他N种方法,比如筛法,其发明人是公元前250年左右的一位希腊大牛——埃拉托斯特尼
首先,2是公认最小的质数,所以,先把所有2的倍数去掉;然后剩下的那些大于2的数里面,最小的是3,所以3也是质数;然后把所有3的倍数都去掉,剩下的那些大于3的数里面,最小的是5,所以5也是质数......
上述过程不断重复,就可以把某个范围内的合数全都除去(就像被筛子筛掉一样),剩下的就是质数了!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容

  • 小学奥数其实很简单,以下是这六个部分的知识点! 1 第一部分(知识点1-6) 2、年龄问题的三个基本特征: ①两个...
    小一哥阅读 1,322评论 0 3
  • 第一章数和数的运算 一概念 (一)整数 1整数的意义 自然数和0都是整数。 2自然数 我们在数物体的时候,用来表示...
    meychang阅读 2,595评论 0 5
  • 小学奥数的知识点约 80个,总体上可以分为五大类。数论和行程问题是小 学奥数学习中的重点也是难点。 一、 计算能力...
    ADolphin阅读 7,594评论 1 3
  • 我只能说内行的看门道,外行的看热闹。学不学的到东西就看你们自己啦。 一,搞好风水, 想搞定他的第一步就是搞好...
    玲儿妹妹阅读 317评论 0 0
  • 当我说这句话的时候,可能会被认为“矫情”。但我想说的是,作为有思考力的人,请不要反被物质所束缚。 我想很多人应该会...
    聂溪绯阅读 344评论 0 0