基础二叉树
二叉树遍历分为前序、中序、后序递归和非递归遍历、还有层序遍历。
//二叉树节点
public class BinaryTreeNode {
private int data;
private BinaryTreeNode left;
private BinaryTreeNode right;
public BinaryTreeNode() {}
public BinaryTreeNode(int data, BinaryTreeNode left, BinaryTreeNode right) {
super();
this.data = data;
this.left = left;
this.right = right;
}
public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
}
public BinaryTreeNode getLeft() {
return left;
}
public void setLeft(BinaryTreeNode left) {
this.left = left;
}
public BinaryTreeNode getRight() {
return right;
}
public void setRight(BinaryTreeNode right) {
this.right = right;
}
}
前序递归遍历算法:访问根结点-->递归遍历根结点的左子树-->递归遍历根结点的右子树
中序递归遍历算法:递归遍历根结点的左子树-->访问根结点-->递归遍历根结点的右子树
后序递归遍历算法:递归遍历根结点的左子树-->递归遍历根结点的右子树-->访问根结点
import com.ccut.aaron.stack.LinkedStack;
public class BinaryTree {
//前序遍历递归的方式
public void preOrder(BinaryTreeNode root){
if(null!=root){
System.out.print(root.getData()+"\t");
preOrder(root.getLeft());
preOrder(root.getRight());
}
}
//前序遍历非递归的方式
public void preOrderNonRecursive(BinaryTreeNode root){
Stack<BinaryTreeNode> stack=new Stack<BinaryTreeNode>();
while(true){
while(root!=null){
System.out.print(root.getData()+"\t");
stack.push(root);
root=root.getLeft();
}
if(stack.isEmpty()) break;
root=stack.pop();
root=root.getRight();
}
}
//中序遍历采用递归的方式
public void inOrder(BinaryTreeNode root){
if(null!=root){
inOrder(root.getLeft());
System.out.print(root.getData()+"\t");
inOrder(root.getRight());
}
}
//中序遍历采用非递归的方式
public void inOrderNonRecursive(BinaryTreeNode root){
Stack<BinaryTreeNode> stack=new Stack<BinaryTreeNode>();
while(true){
while(root!=null){
stack.push(root);
root=root.getLeft();
}
if(stack.isEmpty())break;
root=stack.pop();
System.out.print(root.getData()+"\t");
root=root.getRight();
}
}
//后序遍历采用递归的方式
public void postOrder(BinaryTreeNode root){
if(root!=null){
postOrder(root.getLeft());
postOrder(root.getRight());
System.out.print(root.getData()+"\t");
}
}
//后序遍历采用非递归的方式
public void postOrderNonRecursive(BinaryTreeNode root){
Stack<BinaryTreeNode> stack=new Stack<BinaryTreeNode>();
while(true){
if(root!=null){
stack.push(root);
root=root.getLeft();
}else{
if(stack.isEmpty()) return;
if(null==stack.lastElement().getRight()){
root=stack.pop();
System.out.print(root.getData()+"\t");
while(root==stack.lastElement().getRight()){
System.out.print(stack.lastElement().getData()+"\t");
root=stack.pop();
if(stack.isEmpty()){
break;
}
}
}
if(!stack.isEmpty())
root=stack.lastElement().getRight();
else
root=null;
}
}
}
//层序遍历
public void levelOrder(BinaryTreeNode root){
BinaryTreeNode temp;
Queue<BinaryTreeNode> queue=new LinkedList<BinaryTreeNode>();
queue.offer(root);
while(!queue.isEmpty()){
temp=queue.poll();
System.out.print(temp.getData()+"\t");
if(null!=temp.getLeft())
queue.offer(temp.getLeft());
if(null!=temp.getRight()){
queue.offer(temp.getRight());
}
}
}
public static void main(String[] args) {
BinaryTreeNode node10=new BinaryTreeNode(10,null,null);
BinaryTreeNode node8=new BinaryTreeNode(8,null,null);
BinaryTreeNode node9=new BinaryTreeNode(9,null,node10);
BinaryTreeNode node4=new BinaryTreeNode(4,null,null);
BinaryTreeNode node5=new BinaryTreeNode(5,node8,node9);
BinaryTreeNode node6=new BinaryTreeNode(6,null,null);
BinaryTreeNode node7=new BinaryTreeNode(7,null,null);
BinaryTreeNode node2=new BinaryTreeNode(2,node4,node5);
BinaryTreeNode node3=new BinaryTreeNode(3,node6,node7);
BinaryTreeNode node1=new BinaryTreeNode(1,node2,node3);
BinaryTree tree=new BinaryTree();
//采用递归的方式进行遍历
System.out.println("-----前序遍历------");
tree.preOrder(node1);
System.out.println();
//采用非递归的方式遍历
tree.preOrderNonRecursive(node1);
System.out.println();
//采用递归的方式进行遍历
System.out.println("-----中序遍历------");
tree.inOrder(node1);
System.out.println();
//采用非递归的方式遍历
tree.inOrderNonRecursive(node1);
System.out.println();
//采用递归的方式进行遍历
System.out.println("-----后序遍历------");
tree.postOrder(node1);
System.out.println();
//采用非递归的方式遍历
tree.postOrderNonRecursive(node1);
System.out.println();
//采用递归的方式进行遍历
System.out.println("-----层序遍历------");
tree.levelOrder(node1);
System.out.println();
}
}
二叉搜索树
如果我们给二叉树加一个额外的条件,就可以得到一种被称作二叉搜索树(binary search tree)的特殊二叉树。二叉搜索树要求:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
节点查找
//查找节点
public BinaryTreeNode find(int key) {
BinaryTreeNode current = root;
while(current != null){
if(current.data > key){//当前值比查找值大,搜索左子树
current = current.left;
}else if(current.data < key){//当前值比查找值小,搜索右子树
current = current.right;
}else{
return current;
}
}
return null;//遍历完整个树没找到,返回null
}
插入节点
//插入节点
public boolean insert(BinaryTreeNode root, int data) {
BinaryTreeNode newNode = new BinaryTreeNode(data);
if(root == null){//当前树为空树,没有任何节点
root = newNode;
return true;
}else{
BinaryTreeNode current = root;
BinaryTreeNode parentNode = null;
while(current != null){
parentNode = current;
if(current.data > data){//当前值比插入值大,搜索左子节点
current = current.left;
if(current == null){//左子节点为空,直接将新值插入到该节点
parentNode.left = newNode;
return true;
}
}else{
current = current.right;
if(current == null){//右子节点为空,直接将新值插入到该节点
parentNode.right = newNode;
return true;
}
}
}
}
return false;
}
查找最大值和最小值
要找最小值,先找根的左节点,然后一直找这个左节点的左节点,直到找到没有左节点的节点,那么这个节点就是最小值。同理要找最大值,一直找根节点的右节点,直到没有右节点,则就是最大值。
//找到最大值
public BinaryTreeNode findMax(){
BinaryTreeNode current = root;
BinaryTreeNode maxNode = current;
while(current != null){
maxNode = current;
current = current.right;
}
return maxNode;
}
//找到最小值
public BinaryTreeNode findMin(){
BinaryTreeNode current = root;
BinaryTreeNode minNode = current;
while(current != null){
minNode = current;
current = current.left;
}
return minNode;
}
删除节点
删除节点是二叉搜索树中最复杂的操作,删除的节点有三种情况,前两种比较简单,但是第三种却很复杂。
1、该节点是叶节点(没有子节点)
2、该节点有一个子节点
3、该节点有两个子节点
删除没有子节点的节点
public boolean delete(int key) {
BinaryTreeNode current = root;
BinaryTreeNode parent = root;
boolean isLeftChild = false;
//查找删除值,找不到直接返回false
while(current.data != key){
parent = current;
if(current.data > key){
isLeftChild = true;
current = current.left;
}else{
isLeftChild = false;
current = current.right;
}
if(current == null){
return false;
}
}
//如果当前节点没有子节点
if(current.left == null && current.right == null){
if(current == root){
root = null;
}else if(isLeftChild){
parent.left = null;
}else{
parent.right = null;
}
return true;
}
return false;
}
删除有一个子节点的节点,我们只需要将其父节点原本指向该节点的引用,改为指向该节点的子节点即可。
//当前节点有一个子节点
public boolean delete(int key) {
BinaryTreeNode current = root;
BinaryTreeNode parent = root;
boolean isLeftChild = false;
//查找删除值,找不到直接返回false
while(current.data != key){
parent = current;
if(current.data > key){
isLeftChild = true;
current = current.left;
}else{
isLeftChild = false;
current = current.right;
}
if(current == null){
return false;
}
}
//当前节点有一个子节点
if(current.left == null && current.right != null){
if(current == root){
root = current.right;
}else if(isLeftChild){
parent.left = current.right;
}else{
parent.right = current.right;
}
return true;
}else{
//current.left != null && current.right == null
if(current == root){
root = current.left;
}else if(isLeftChild){
parent.left = current.left;
}else{
parent.right = current.left;
}
return true;
}
return false;
}