4次优化,我的 Redis 差点飞起来

我们有个这样的需求:每天每一个抢购商品只能买一次,并且全场抢购商品总购买次数不允许超过5次。

那么,整个商品限购的流程大概如下图所示:

image

那么,在每次购买成功商品成功后,发送的MQ大概是这样的(假设当前这笔订单有两件抢购商品):

这条消息表示860000000000001这个用户在1581001673012这个时间点(北京时间为2020/02/06 23:07:53)在A045这个商户分别购买了商品ID为599055114591和599055114592两样商品。

那么,当消费这条信息后,更新频控的几条关键Redis命令如下(上面的需求不是重点,优化下面5条命令才是本文的重点):[{
"orderId": "2020020622000001",
"orderTime": "1581001673012",
"productId": "599055114591",
"userId": "860000000000001",
"merchantCode": "A045"
}, {
"orderId": "2020020622000001",
"orderTime": "1581001673012",
"productId": "599055114592",
"userId": "860000000这条消息表示860000000000001这个用户在1581001673012这个时间点(北京时间为2020/02/06 23:07:53)在A045这个商户分别购买了商品ID为599055114591和599055114592两样商品。

那么,当消费这条信息后,更新频控的几条关键Redis命令如下(上面的需求不是重点,优化下面5条命令才是本文的重点):0001",
"merchantCode": "A045"
}]

这条消息表示860000000000001这个用户在1581001673012这个时间点(北京时间为2020/02/06 23:07:53)在A045这个商户分别购买了商品ID为599055114591和599055114592两样商品。

那么,当消费这条信息后,更新频控的几条关键Redis命令如下(上面的需求不是重点,<u style="margin: 0px; padding: 0px; border: 0px; font: inherit; vertical-align: baseline; word-break: break-word;">优化下面5条命令才是本文的重点</u>):

命令1:hset mall:sale:freq:ctrl:860000000000001 599055114591 1(hash结构,field表示购买的商品ID,value表示购买次数)
命令2:hset mall:sale:freq:ctrl:860000000000001 599055114592 2
命令3:expire mall:sale:freq:ctrl:860000000000001 3127(设置过期时间)
命令4:set mall:total:freq:ctrl:860000000000001 3
命令5:expire mall:total:freq:ctrl:860000000000001 3127(设置过期时间)

我们首先了解一下执行一条Redis命令耗时由哪几部分组成:

发送命令网络传输时间,命令在Redis服务端队列中等待的时间,命令执行的时间(Redis中的slowlog只是检测这一步骤的时间),结果返回的Redis客户端的时间。

如下图所示:

image

上面的业务总计涉及5条Redis命令,每条命令都需要经过这些步骤,可想而知性能真的弱爆了(可能整个执行过程还不需要10ms,但还是弱爆了)。

  • 第1次优化

第一次优化非常简单,稍微有点经验就能看出来,利用hmset命令将两条hmset命令合二为一,优化后的Redis命令如下:

hmset mall:sale:freq:ctrl:860000000000001 599055114591 1 599055114592 2
expire mall:sale:freq:ctrl:860000000000001 3127
set mall:total:freq:ctrl:860000000000001 3
expire mall:total:freq:ctrl:860000000000001 3127
  • 第2次优化

第二次优化将set和expire命令合二为一,这个一般对Redis有点了解的也知道如何优化:

hmset mall:sale:freq:ctrl:860000000000001 599055114591 1 599055114592 2
expire mall:sale:freq:ctrl:860000000000001 3127
setex mall:total:freq:ctrl:860000000000001 3127 3
  • 第3次优化

第3次优化需要借助pipeline,简直就是Redis优化的一大杀器。

不过,需要注意的是在RedisCluster中使用pipeline时必须满足pipeline打包的所有命令key在RedisCluster的同一个slot上

如果打包命令的key不在同一个slot上,就会报错。所以我们需要分两批打包:

-- 这两条命令的key都是一样的,肯定在同一个slot上
pipeline(
hmset mall:sale:freq:ctrl:860000000000001 599055114591 1 599055114592 2
expire mall:sale:freq:ctrl:860000000000001 3127
)
-- mall:total:freq:ctrl:860000000000001和mall:sale:freq:ctrl:860000000000001两条命令不在同一个slot上,所以需要单独执行下面这条命令
setex mall:total:freq:ctrl:860000000000001 3127 3

经过第3次的优化后,这些命令还是需要2次网络交互。较劲的我还是不甘心,想要将其优化到只需要一次网络交互即可,有没有办法?

当然有!

  • 第4次优化

这次优化利用了一个高级特性:hashtag

是啥子意思呢?我们知道,RedisCluster总计有161024=16384个slot。那么执行一条Redis命令时,其key对应的是哪个slot呢?是利用这样一个计算公式得到的:slot = CRC16(key)%16384*

示意图如下:

image

也就是说,默认情况下,key在哪个slot上,与key有关。那么,我们能否只让key在哪个slot上与部分key有关呢?

当然可以,这就是hashtag特性。用法非常简单,假设一个key是mall:sale:freq:ctrl:860000000000001,我们只需要用{}将key中我们需要的那部分包括起来即可。

例如,我们只想让其根据用户IMEI计算即可,那么key是这样的:mall:sale:freq:ctrl:{860000000000001}。只要key中有{860000000000001}这一部分,就一定落在同一个slot上。

所以,第四次优化以后的命令执行如下所示:

pipeline(
hmset mall:sale:freq:ctrl:${860000000000001} 599055114591 1 599055114592 2
expire mall:sale:freq:ctrl:${860000000000001} 3127
setex mall:total:freq:ctrl:${860000000000001} 3127 3
)
image

优化后,5条Redis命令压缩到3条Redis命令,并且3条Redis命令只需要发送一次,并且结果也一次就能全部返回。简直完美!

  • 注意事项

我们在使用hashtag特性时,一定要注意,不能把key的离散性变得非常差

以本文为例,没有利用hashtag特性之前,key是这样的:mall:sale:freq:ctrl:860000000000001,很明显这种key由于与用户相关,所以离散性非常好。

而使用hashtag以后,key是这样的:mall:sale:freq:ctrl:{860000000000001},这种key还是与用户相关,所以离散性依然非常好。

我们千万不要这样来使用hashtag特性,例如将key设置为:mall:{sale:freq:ctrl}:860000000000001。

这样的话,无论有多少个用户多少个key,其{}中的内容完全一样都是sale:freq:ctrl,也就是说,所有的key都会落在同一个slot上,导致整个Redis集群出现严重的倾斜问题。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 227,533评论 6 531
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,055评论 3 414
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 175,365评论 0 373
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 62,561评论 1 307
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 71,346评论 6 404
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 54,889评论 1 321
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,978评论 3 439
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,118评论 0 286
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 48,637评论 1 333
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,558评论 3 354
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 42,739评论 1 369
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,246评论 5 355
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,980评论 3 346
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,362评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 35,619评论 1 280
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,347评论 3 390
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,702评论 2 370

推荐阅读更多精彩内容

  • 1 Redis介绍1.1 什么是NoSql为了解决高并发、高可扩展、高可用、大数据存储问题而产生的数据库解决方...
    克鲁德李阅读 5,329评论 0 36
  • 请求路由 目前我们已经搭建好Redis集群并且理解了通信和伸缩细节,但还没有使用客户端去操作集群。Redis集群对...
    达微阅读 1,160评论 0 1
  • 前沿 最近工作中在优化redis访问性能,这里总结一下优化过程中redis使用方法的一些心得体会,以及在sprin...
    小晓陈er阅读 5,541评论 1 5
  • 一.Redis简介 Redis 是完全开源免费的,是一个高性能的key-value类型的内存数据库。整个数据库统统...
    小星的java学习笔记阅读 23,463评论 0 13
  • 落寞怀思入夜愁, 寒凉点点铄清眸。 倚窗漫看连绵雨, 心事重重瑟瑟秋。
    不惑而歌阅读 476评论 41 44