使用Pytorch构建卷积神经网络的分类器

掌握目标
  • 了解分类器的任务和数据样式
  • 掌握如何使用pytorch 实现基于CNN的分类器

分类任务和数据介绍

  • 构造不同图像分类的神经网络分类器,对输入的图片进行判别并完成分类
  • 本案例采用CIFAR10数据集作为原始图片数据。
    CIFAR10 数据集中每张图片的尺寸是 3X32X32 代表的是彩色 3通道;CIFAR10数据集总共有10种不同的分类, 分别是"airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"

训练分类器的步骤
  1. 使用torchvision 下载 数据集
  2. 定义卷积神经网络
  3. 定义损失函数
  4. 在训练集上训练模型
  5. 在测试集上测试模型

使用torchvision 下载数据集,导入包
import torch
import torchvision
import torchvision.transforms as transforms
  • 下载数据集并对图片进行调整, torchvison 数据集的输出是PILImage格式,数据域在[0,1].将其转换为[-1,1]上的张量
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)#如果是windows下下载,num_workers=0

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2) #如果是windows下下载,num_workers=0

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
  • 展示若干训练集的图片
# 导入画图包和numpy
import matplotlib.pyplot as plt
import numpy as np

# 构建展示图片的函数
def imshow(img):
    img = img / 2 + 0.5
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# 从数据迭代器中读取一张图片
dataiter = iter(trainloader)
images, labels = dataiter.next()

# 展示图片
imshow(torchvision.utils.make_grid(images))
# 打印标签label
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
定义卷积神经网络

可以参考神经网络的构建

import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()
定义损失函数
  • 采用的是交叉熵损失函数和随机梯度下降优化器
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
在训练集上训练模型
for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):#可迭代序列,start = 0
        # data中包含输入图像张量inputs, 标签张量labels
        inputs, labels = data

        # 首先将优化器梯度归零
        optimizer.zero_grad()

        # 输入图像张量进网络, 得到输出张量outputs
        outputs = net(inputs)

        # 利用网络的输出outputs和标签labels计算损失值
        loss = criterion(outputs, labels)

        # 反向传播+参数更新, 标准流程
        loss.backward()
        optimizer.step()

        # 打印轮次和损失值
        running_loss += loss.item()
        if (i + 1) % 2000 == 0:
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

结果

[1, 2000] loss: 2.303
[1, 4000] loss: 2.298
[1, 6000] loss: 2.279
[1, 8000] loss: 2.162
[1,10000] loss: 1.961
[1,12000] loss: 1.854
[2, 2000] loss: 1.759
[2, 4000] loss: 1.704
[2, 6000] loss: 1.670
[2, 8000] loss: 1.617
[2,10000] loss: 1.582
[2,12000] loss: 1.565

保存模型以及进行测试

PATH = './cifar_net.pth'
# 保存模型的状态字典
torch.save(net.state_dict(), PATH)

#加载模型进行测试
net = Net()
net.load_state_dict(torch.load(PATH))

在全部测试集上的表现

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))
Accuracy of the network on the 10000 test images: 44 %

如果在GPU上进行训练的话

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print(device)

#将模型转到GPU
net.to(device)

# 将输入的图片张量和标签张量转移到GPU上
inputs, labels = data[0].to(device), data[1].to(device)

总结

  • 学习了分类器任务和数据的下载
  • 学习了训练分类器的步骤:
    -- 使用torchvision 下载数据集;定义卷积神经网络;定义损失函数,优化器;在训练集上训练模型;在测试集上测试模型
  • 学习了在GPU上训练模型
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容