Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN

快速入门

使用 Spark Shell 进行交互式分析

基础

Dataset 上的更多操作

缓存

独立的应用

快速跳转

本教程提供了如何使用 Spark 的快速入门介绍。首先通过运行 Spark 交互式的 shell(在 Python 或 Scala 中)来介绍 API, 然后展示如何使用 Java , Scala 和 Python 来编写应用程序。

为了继续阅读本指南, 首先从Spark 官网下载 Spark 的发行包。因为我们将不使用 HDFS, 所以你可以下载一个任何 Hadoop 版本的软件包。

请注意, 在 Spark 2.0 之前, Spark 的主要编程接口是弹性分布式数据集(RDD)。 在 Spark 2.0 之后, RDD 被 Dataset 替换, 它是像RDD 一样的 strongly-typed(强类型), 但是在引擎盖下更加优化。 RDD 接口仍然受支持, 您可以在RDD 编程指南中获得更完整的参考。 但是, 我们强烈建议您切换到使用 Dataset(数据集), 其性能要更优于 RDD。 请参阅SQL 编程指南获取更多有关 Dataset 的信息。

使用 Spark Shell 进行交互式分析

基础

Spark shell 提供了一种来学习该 API 比较简单的方式, 以及一个强大的来分析数据交互的工具。在 Scala(运行于 Java 虚拟机之上, 并能很好的调用已存在的 Java 类库)或者 Python 中它是可用的。通过在 Spark 目录中运行以下的命令来启动它:

Scala

Python

./bin/spark-shell

Spark 的主要抽象是一个称为 Dataset 的分布式的 item 集合。Datasets 可以从 Hadoop 的 InputFormats(例如 HDFS文件)或者通过其它的 Datasets 转换来创建。让我们从 Spark 源目录中的 README 文件来创建一个新的 Dataset:

scala>valtextFile=spark.read.textFile("README.md")textFile:org.apache.spark.sql.Dataset[String]=[value:string]

您可以直接从 Dataset 中获取 values(值), 通过调用一些 actions(动作), 或者 transform(转换)Dataset 以获得一个新的。更多细节, 请参阅API doc

scala>textFile.count()// Number of items in this Datasetres0:Long=126// May be different from yours as README.md will change over time, similar to other outputsscala>textFile.first()// First item in this Datasetres1:String=#ApacheSpark

现在让我们 transform 这个 Dataset 以获得一个新的。我们调用filter以返回一个新的 Dataset, 它是文件中的 items 的一个子集。

scala>vallinesWithSpark=textFile.filter(line=>line.contains("Spark"))linesWithSpark:org.apache.spark.sql.Dataset[String]=[value:string]

我们可以链式操作 transformation(转换)和 action(动作):

scala>textFile.filter(line=>line.contains("Spark")).count()// How many lines contain "Spark"?res3:Long=15

Dataset 上的更多操作

Dataset actions(操作)和 transformations(转换)可以用于更复杂的计算。例如, 统计出现次数最多的单词 :

Scala

Python

scala>textFile.map(line=>line.split(" ").size).reduce((a,b)=>if(a>b)aelseb)res4:Long=15

第一个 map 操作创建一个新的 Dataset, 将一行数据 map 为一个整型值。在 Dataset 上调用reduce来找到最大的行计数。参数map与reduce是 Scala 函数(closures), 并且可以使用 Scala/Java 库的任何语言特性。例如, 我们可以很容易地调用函数声明, 我们将定义一个 max 函数来使代码更易于理解 :

scala>importjava.lang.Mathimportjava.lang.Mathscala>textFile.map(line=>line.split(" ").size).reduce((a,b)=>Math.max(a,b))res5:Int=15

一种常见的数据流模式是被 Hadoop 所推广的 MapReduce。Spark 可以很容易实现 MapReduce:

scala>valwordCounts=textFile.flatMap(line=>line.split(" ")).groupByKey(identity).count()wordCounts:org.apache.spark.sql.Dataset[(String,Long)]=[value:string,count(1):bigint]

在这里, 我们调用了flatMap以 transform 一个 lines 的 Dataset 为一个 words 的 Dataset, 然后结合groupByKey和count来计算文件中每个单词的 counts 作为一个 (String, Long) 的 Dataset pairs。要在 shell 中收集 word counts, 我们可以调用collect:

scala>wordCounts.collect()res6:Array[(String,Int)]=Array((means,1),(under,2),(this,3),(Because,1),(Python,2),(agree,1),(cluster.,1),...)

缓存

Spark 还支持 Pulling(拉取)数据集到一个群集范围的内存缓存中。例如当查询一个小的 “hot” 数据集或运行一个像 PageRANK 这样的迭代算法时, 在数据被重复访问时是非常高效的。举一个简单的例子, 让我们标记我们的linesWithSpark数据集到缓存中:

Scala

Python

scala>linesWithSpark.cache()res7:linesWithSpark.type=[value:string]scala>linesWithSpark.count()res8:Long=15scala>linesWithSpark.count()res9:Long=15

使用 Spark 来探索和缓存一个 100 行的文本文件看起来比较愚蠢。有趣的是, 即使在他们跨越几十或者几百个节点时, 这些相同的函数也可以用于非常大的数据集。您也可以像编程指南. 中描述的一样通过连接bin/spark-shell到集群中, 使用交互式的方式来做这件事情。

独立的应用

假设我们希望使用 Spark API 来创建一个独立的应用程序。我们在 Scala(SBT), Java(Maven)和 Python 中练习一个简单应用程序。

Scala

Java

Python

我们将在 Scala 中创建一个非常简单的 Spark 应用程序 - 很简单的, 事实上, 它名为SimpleApp.scala:

/* SimpleApp.scala */importorg.apache.spark.sql.SparkSessionobjectSimpleApp{defmain(args:Array[String]){vallogFile="YOUR_SPARK_HOME/README.md"// Should be some file on your systemvalspark=SparkSession.builder.appName("Simple Application").getOrCreate()vallogData=spark.read.textFile(logFile).cache()valnumAs=logData.filter(line=>line.contains("a")).count()valnumBs=logData.filter(line=>line.contains("b")).count()println(s"Lines with a:$numAs, Lines with b:$numBs")spark.stop()}}

注意, 这个应用程序我们应该定义一个main()方法而不是去扩展scala.App。使用scala.App的子类可能不会正常运行。

该程序仅仅统计了 Spark README 文件中每一行包含 ‘a’ 的数量和包含 ‘b’ 的数量。注意, 您需要将 YOUR_SPARK_HOME 替换为您 Spark 安装的位置。不像先前使用 spark shell 操作的示例, 它们初始化了它们自己的 SparkContext, 我们初始化了一个 SparkContext 作为应用程序的一部分。

我们调用SparkSession.builder以构造一个 [[SparkSession]], 然后设置 application name(应用名称), 最终调用getOrCreate以获得 [[SparkSession]] 实例。

我们的应用依赖了 Spark API, 所以我们将包含一个名为build.sbt的 sbt 配置文件, 它描述了 Spark 的依赖。该文件也会添加一个 Spark 依赖的 repository:

name:="Simple Project"version:="1.0"scalaVersion:="2.11.8"libraryDependencies+="org.apache.spark"%%"spark-sql"%"2.2.0"

为了让 sbt 正常的运行, 我们需要根据经典的目录结构来布局SimpleApp.scala和build.sbt文件。在成功后, 我们可以创建一个包含应用程序代码的 JAR 包, 然后使用spark-submit脚本来运行我们的程序。

# Your directory layout should look like this$ find .../build.sbt./src./src/main./src/main/scala./src/main/scala/SimpleApp.scala# Package a jar containing your application$ sbt package...[info]Packaging{..}/{..}/target/scala-2.11/simple-project_2.11-1.0.jar# Use spark-submit to run your application$ YOUR_SPARK_HOME/bin/spark-submit\--class"SimpleApp"\--master local[4]\target/scala-2.11/simple-project_2.11-1.0.jar...Lines with a:46, Lines with b:23

快速跳转

恭喜您成功的运行了您的第一个 Spark 应用程序!

更多 API 的深入概述, 从RDD programming guideSQL programming guide这里开始, 或者看看 “编程指南” 菜单中的其它组件。

为了在集群上运行应用程序, 请前往deployment overview.

最后, 在 Spark 的examples目录中包含了一些 (Scala,Java,Python,R) 示例。您可以按照如下方式来运行它们:

# 针对 Scala 和 Java, 使用 run-example:./bin/run-example SparkPi# 针对 Python 示例, 直接使用 spark-submit:./bin/spark-submit examples/src/main/python/pi.py# 针对 R 示例, 直接使用 spark-submit:./bin/spark-submit examples/src/main/r/dataframe.R

我们一直在努力

apachecn/spark-doc-zh

原文地址: http://spark.apachecn.org/docs/cn/2.2.0/quick-start.html

网页地址: http://spark.apachecn.org/

github: https://github.com/apachecn/spark-doc-zh(觉得不错麻烦给个 Star,谢谢!~)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容