Matplotlib绘图

从画一个最简单的正余弦函数sin、cos开始,逐步增加复杂性。
代码后边的图便是代码的运行结果。

# 20181221 By Galory
# learning materials from http://www.labri.fr/perso/nrougier/teaching/matplotlib/
# draw the cosine and sine functions on the same plot

# using defaults
import numpy as np
import matplotlib.pyplot as plt
# get the data for the sine and cosine functions
X = np.linspace(-np.pi,np.pi,256,endpoint=True)
# X is now a numpy array with 256 values 
# ranging from -π to +π (included). 
# C is the cosine (256 values) and S is the sine (256 values)
C,S = np.cos(X),np.sin(X)
plt.plot(X,C)
plt.plot(X,S)
plt.show()
image.png

# Instantiating defaults
# Imports
import numpy as np
import matplotlib.pyplot as plt

# Create a new figure of size 8x6 points,using 100 dots perinch
plt.figure(figsize=(8,6),dpi=80)

# Create a new subplot from a grid of 1x1
plt.subplot(111)

X = np.linspace(-np.pi,np.pi,256,endpoint=True)
C,S = np.cos(X),np.sin(X)

# Plot cosine using blue color with a continuous line of width 1(pixels)
plt.plot(X,C,color = "blue",linewidth = 1.0,linestyle = "-")

# Plot sine using green color with a continuous line of width 1(pixels)
plt.plot(X,S,color = "green",linewidth = 1.0,linestyle = "-")

# Set x limits
plt.xlim(-4.0,4.0)

# Set x ticks
plt.xticks(np.linspace(-4,4,9,endpoint=True))

# Set y limits
plt.ylim(-1.0,1.0)

# Set y ticks
plt.yticks(np.linspace(-1,1,5,endpoint=True))

# Save figure using 72 dots per inch
# savefig("../figures/exercice_2.png",dpi=72)

# Show result on screen
plt.show()

image.png

# Changing colors andline widths
# Imports
import numpy as np
import matplotlib.pyplot as plt

# Create a new figure of size 8x6 points,using 100 dots perinch
plt.figure(figsize=(10,6),dpi=80)

# Create a new subplot from a grid of 1x1
plt.subplot(111)

X = np.linspace(-np.pi,np.pi,256,endpoint=True)
C,S = np.cos(X),np.sin(X)

# Plot cosine using blue color with a continuous line of width 1(pixels)
plt.plot(X,C,color = "blue",linewidth = 2.5,linestyle = "-")

# Plot sine using green color with a continuous line of width 1(pixels)
plt.plot(X,S,color = "red",linewidth = 2.5,linestyle = "-")

# Set x limits
plt.xlim(-4.0,4.0)

# Set x ticks
plt.xticks(np.linspace(-4,4,9,endpoint=True))

# Set y limits
plt.ylim(-1.0,1.0)

# Set y ticks
plt.yticks(np.linspace(-1,1,5,endpoint=True))

# Save figure using 72 dots per inch
# savefig("../figures/exercice_2.png",dpi=72)

# Show result on screen
plt.show()

image.png

import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6),dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi,np.pi,256,endpoint=True)
C,S = np.cos(X),np.sin(X)
plt.plot(X,C,color = "blue",linewidth = 2.5,linestyle = "-")
plt.plot(X,S,color = "red",linewidth = 2.5,linestyle = "-")
plt.xlim(X.min()*1.1,X.max()*1.1)
plt.xticks(np.linspace(-4,4,9,endpoint=True))
plt.ylim(C.min()*1.1,C.max()*1.1)
plt.yticks(np.linspace(-1,1,5,endpoint=True))
plt.show()

image.png

# Setting ticks
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6),dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi,np.pi,256,endpoint=True)
C,S = np.cos(X),np.sin(X)
plt.plot(X,C,color = "blue",linewidth = 2.5,linestyle = "-")
plt.plot(X,S,color = "red",linewidth = 2.5,linestyle = "-")
plt.xlim(X.min()*1.1,X.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi])
plt.ylim(C.min()*1.1,C.max()*1.1)
plt.yticks([-1,0,1])
plt.show()

image.png

# Setting tick labels
# Ticks are now properly placed but their label is not very explicit. We could guess that 3.142 is π but it would be better to make it explicit. When we set tick values, we can also provide a corresponding label in the second argument list. Note that we'll use latex to allow for nice rendering of the label.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6),dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi,np.pi,256,endpoint=True)
C,S = np.cos(X),np.sin(X)
plt.plot(X,C,color = "blue",linewidth = 2.5,linestyle = "-")
plt.plot(X,S,color = "red",linewidth = 2.5,linestyle = "-")
plt.xlim(X.min()*1.1,X.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$+\pi/2$',r'$+\pi$'])
plt.ylim(C.min()*1.1,C.max()*1.1)
plt.yticks([-1,0,1],[r'$-1$',r'$0$',r'$+1$'])
plt.show()

image.png

# Moving spines
# Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They can be placed at arbitrary positions and until now, they were on the border of the axis. We'll change that since we want to have them in the middle. Since there are four of them (top/bottom/left/right), we'll discard the top and right by setting their color to none and we'll move the bottom and left ones to coordinate 0 in data space coordinates.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6),dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi,np.pi,256,endpoint=True)
C,S = np.cos(X),np.sin(X)
plt.plot(X,C,color = "blue",linewidth = 2.5,linestyle = "-")
plt.plot(X,S,color = "red",linewidth = 2.5,linestyle = "-")
plt.xlim(X.min()*1.1,X.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$+\pi/2$',r'$+\pi$'])
plt.ylim(C.min()*1.1,C.max()*1.1)
plt.yticks([-1,0,1],[r'$-1$',r'$0$',r'$+1$'])
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.show()

image.png

# Adding a legend
# Let's add a legend in the upper left corner. This only requires adding the keyword argument label (that will be used in the legend box) to the plot commands.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6),dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi,np.pi,256,endpoint=True)
C,S = np.cos(X),np.sin(X)
plt.plot(X,C,color = "blue",linewidth = 2.5,linestyle = "-",label="cosine")
plt.plot(X,S,color = "red",linewidth = 2.5,linestyle = "-",label="sine")
plt.xlim(X.min()*1.1,X.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$+\pi/2$',r'$+\pi$'])
plt.ylim(C.min()*1.1,C.max()*1.1)
plt.yticks([-1,0,1],[r'$-1$',r'$0$',r'$+1$'])
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.legend(loc='upper left',frameon=False)
plt.show()

image.png

# Annotate some points 注释一些点
# Let's annotate some interesting points using the annotate command. We chose the 2π/3 value and we want to annotate both the sine and the cosine. We'll first draw a marker on the curve as well as a straight dotted line. Then, we'll use the annotate command to display some text with an arrow.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6),dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi,np.pi,256,endpoint=True)
C,S = np.cos(X),np.sin(X)
plt.plot(X,C,color = "blue",linewidth = 2.5,linestyle = "-",label="cosine")
plt.plot(X,S,color = "red",linewidth = 2.5,linestyle = "-",label="sine")
plt.xlim(X.min()*1.1,X.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$+\pi/2$',r'$+\pi$'])
plt.ylim(C.min()*1.1,C.max()*1.1)
plt.yticks([-1,0,1],[r'$-1$',r'$0$',r'$+1$'])
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.legend(loc='upper left',frameon=False)

t = 2*np.pi/3
plt.plot([t,t],[0,np.cos(t)],color='blue',linewidth=1.5,linestyle="-")
plt.scatter([t,],[np.cos(t),],50,color = 'blue')
plt.annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
             xy=(t, np.sin(t)), xycoords='data',
             xytext=(+10, +30), textcoords='offset points', fontsize=16,
             arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

plt.plot([t,t],[0,np.sin(t)], color ='red', linewidth=1.5, linestyle="--")
plt.scatter([t,],[np.sin(t),], 50, color ='red')

plt.annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}{2}$',
             xy=(t, np.cos(t)), xycoords='data',
             xytext=(-90, -50), textcoords='offset points', fontsize=16,
             arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
plt.show()

image.png

# Devils is in the details
# The tick labels are now hardly visible because of the blue and red lines. We can make them bigger and we can also adjust their properties such that they'll be rendered on a semi-transparent white background. This will allow us to see both the data and the labels.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6),dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi,np.pi,256,endpoint=True)
C,S = np.cos(X),np.sin(X)
plt.plot(X,C,color = "blue",linewidth = 2.5,linestyle = "-",label="cosine")
plt.plot(X,S,color = "red",linewidth = 2.5,linestyle = "-",label="sine")
plt.xlim(X.min()*1.1,X.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$+\pi/2$',r'$+\pi$'])
plt.ylim(C.min()*1.1,C.max()*1.1)
plt.yticks([-1,0,1],[r'$-1$',r'$0$',r'$+1$'])
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.legend(loc='upper left',frameon=False)

t = 2*np.pi/3
plt.plot([t,t],[0,np.cos(t)],color='blue',linewidth=1.5,linestyle="-")
plt.scatter([t,],[np.cos(t),],50,color = 'blue')
plt.annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
             xy=(t, np.sin(t)), xycoords='data',
             xytext=(+10, +30), textcoords='offset points', fontsize=16,
             arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

plt.plot([t,t],[0,np.sin(t)], color ='red', linewidth=1.5, linestyle="--")
plt.scatter([t,],[np.sin(t),], 50, color ='red')

plt.annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}{2}$',
             xy=(t, np.cos(t)), xycoords='data',
             xytext=(-90, -50), textcoords='offset points', fontsize=16,
             arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
for label in ax.get_xticklabels() + ax.get_yticklabels():
    label.set_fontsize(16)
    label.set_bbox(dict(facecolor='white',edgecolor='None',alpha=0.65))
plt.show()

image.png

image.png
image.png

Subplots:

With subplot you can arrange plots in a regular grid. You need to specify the number of rows and columns and the number of the plot. Note that the gridspec command is a more powerful alternative.

image.png

Axes:

Axes are very similar to subplots but allow placement of plots at any location in the figure. So if we want to put a smaller plot inside a bigger one we do so with axes.


image.png

'''

Animation

'''

Animation

Drip drop

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.animation import FuncAnimation

New figure with background

fig = plt.figure(figsize=(6,6),facecolor='white')

New axis over the whole figure,no frame and a 1:1 aspect ratio

ax = fig.add_axes([0,0,1,1],frameon = False,aspect = 1)

Number of ring

n = 50
size_min = 50
size_max = 50*50

Ring position

P = np.random.uniform(0,1,(n,2))

Ring colors

C = np.ones((n,4)) * (0,0,0,1)

Alpha color channel goes from 0 (transparent) to 1 (opaque)

C[:,3] = np.linspace(0,1,n)

Ring sizes

S = np.linspace(size_min,size_max,n)

Scatter plot

scat = ax.scatter(P[:,0],P[:,1],s=S,lw=0.5,edgecolors = C,facecolors = 'None')

Ensure limits are [0,1] and remove ticks

ax.set_xlim(0,1),ax.set_xticks([])
ax.set_ylim(0,1),ax.set_yticks([])
plt.show()
'''


image.png

# Animation
# Drip drop
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.animation import FuncAnimation
# New figure with background
fig = plt.figure(figsize=(6,6),facecolor='white')
# New axis over the whole figure,no frame and a 1:1 aspect ratio
ax = fig.add_axes([0,0,1,1],frameon = False,aspect = 1)

# Number of ring
n = 50
size_min = 50
size_max = 50*50

# Ring position
P = np.random.uniform(0,1,(n,2))
# Ring colors
C = np.ones((n,4)) * (0,0,0,1)
# Alpha color channel goes from 0 (transparent) to 1 (opaque)
C[:,3] = np.linspace(0,1,n)
# Ring sizes
S = np.linspace(size_min,size_max,n)
# Scatter plot
scat = ax.scatter(P[:,0],P[:,1],s=S,lw=0.5,edgecolors = C,facecolors = 'None')
# Ensure limits are [0,1] and remove ticks
ax.set_xlim(0,1),ax.set_xticks([])
ax.set_ylim(0,1),ax.set_yticks([])


# update function for our animation
def update(frame):
    global P, C, S

    # Every ring is made more transparent
    C[:,3] = np.maximum(0, C[:,3] - 1.0/n)

    # Each ring is made larger
    S += (size_max - size_min) / n

    # Reset ring specific ring (relative to frame number)
    i = frame % 50
    P[i] = np.random.uniform(0,1,2)
    S[i] = size_min
    C[i,3] = 1

    # Update scatter object
    scat.set_edgecolors(C)
    scat.set_sizes(S)
    scat.set_offsets(P)

    # Return the modified object
    return scat,
animation = FuncAnimation(fig,update,interval=10,blit=True,frames=200)
# animation.save('rain.gif',writer='imagemagick',fps=30,dpi=40)
plt.show()

此时就有了动画效果,这里没有显示。

# Bar Plots
import numpy as np
import matplotlib.pyplot as plt

n = 12
X = np.arange(n)
Y1 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)
Y2 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)

# plt.axes([0.025,0.025,0.95,0.95])
plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')

for x,y in zip(X,Y1):
    plt.text(x, y+0.05, '%.2f' % y, ha='center', va= 'bottom')

for x,y in zip(X,Y2):
    plt.text(x, -y-0.05, '%.2f' % y, ha='center', va= 'top')

plt.xlim(-.5,n), plt.xticks([])
plt.ylim(-1.25,+1.25), plt.yticks([])

# savefig('../figures/bar_ex.png', dpi=48)
plt.show()

image.png

# Contour Plots
import numpy as np
import matplotlib.pyplot as plt

def f(x,y): 
    return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2)

n = 256
x = np.linspace(-3,3,n)
y = np.linspace(-3,3,n)
X,Y = np.meshgrid(x,y)

plt.axes([0.025,0.025,0.95,0.95])
plt.contourf(X, Y, f(X,Y), 8, alpha=.75, cmap=plt.cm.hot)
C = plt.contour(X, Y, f(X,Y), 8, colors='black', linewidth=.5)
plt.clabel(C,inline=1,fontsize=10)
plt.xticks([]),plt.yticks([])
# savefig('../figures/contour_ex.png',dpi=48)
plt.show()

image.png

# Imshow
import numpy as np
import matplotlib.pyplot as plt

def f(x,y): return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2)

n = 10
x = np.linspace(-3,3,4*n)
y = np.linspace(-3,3,3*n)
X,Y = np.meshgrid(x,y)
Z = f(X,Y)
plt.axes([0.025,0.025,0.95,0.95])
plt.imshow(Z,interpolation='nearest',cmap='bone',origin='lower')
plt.colorbar(shrink=.92)

plt.xticks([]),plt.yticks([])
# savefig('../figures/imshow_ex.png', dpi=48)
plt.show()

image.png

# Pie Charts
import numpy as np
import matplotlib.pyplot as plt
n= 20
Z = np.ones(n)
Z[-1]*=2
plt.axes([0.025,0.025,0.95,0.95])
plt.pie(Z,explode=Z*.05,colors = ['%f' %(i/float(n)) for i in range(n)])
plt.gca().set_aspect('equal')
plt.xticks([]),plt.yticks([])
# savefig('../figures/pie_ex.png',dpi=48)
plt.show()

image.png

import numpy as np
import matplotlib.pyplot as plt

n = 8
X,Y = np.mgrid[0:n,0:n]
T = np.arctan2(Y-n/2.0, X-n/2.0)
R = 10+np.sqrt((Y-n/2.0)**2+(X-n/2.0)**2)
U,V = R*np.cos(T), R*np.sin(T)

plt.axes([0.025,0.025,0.95,0.95])
plt.quiver(X,Y,U,V,R, alpha=.5)
plt.quiver(X,Y,U,V, edgecolor='k', facecolor='None', linewidth=.5)

plt.xlim(-1,n), plt.xticks([])
plt.ylim(-1,n), plt.yticks([])

# savefig('../figures/quiver_ex.png',dpi=48)
plt.show()

image.png

# Grids
import numpy as np
import matplotlib.pyplot as plt

ax = plt.axes([0.025,0.025,0.95,0.95])

ax.set_xlim(0,4)
ax.set_ylim(0,3)
ax.xaxis.set_major_locator(plt.MultipleLocator(1.0))
ax.xaxis.set_minor_locator(plt.MultipleLocator(0.1))
ax.yaxis.set_major_locator(plt.MultipleLocator(1.0))
ax.yaxis.set_minor_locator(plt.MultipleLocator(0.1))
ax.grid(which='major', axis='x', linewidth=0.75, linestyle='-', color='0.75')
ax.grid(which='minor', axis='x', linewidth=0.25, linestyle='-', color='0.75')
ax.grid(which='major', axis='y', linewidth=0.75, linestyle='-', color='0.75')
ax.grid(which='minor', axis='y', linewidth=0.25, linestyle='-', color='0.75')
ax.set_xticklabels([])
ax.set_yticklabels([])

# savefig('../figures/grid_ex.png',dpi=48)
plt.show()

image.png

# Multi Plots
import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
fig.subplots_adjust(bottom=0.025, left=0.025, top = 0.975, right=0.975)

plt.subplot(2,1,1)
plt.xticks([]), plt.yticks([])

plt.subplot(2,3,4)
plt.xticks([]), plt.yticks([])

plt.subplot(2,3,5)
plt.xticks([]), plt.yticks([])

plt.subplot(2,3,6)
plt.xticks([]), plt.yticks([])

# plt.savefig('../figures/multiplot_ex.png',dpi=48)
plt.show()

image.png

# Polar Axis
import numpy as np
import matplotlib.pyplot as plt

ax = plt.axes([0.025,0.025,0.95,0.95], polar=True)

N = 20
theta = np.arange(0.0, 2*np.pi, 2*np.pi/N)
radii = 10*np.random.rand(N)
width = np.pi/4*np.random.rand(N)
bars = plt.bar(theta, radii, width=width, bottom=0.0)

for r,bar in zip(radii, bars):
    bar.set_facecolor( plt.cm.jet(r/10.))
    bar.set_alpha(0.5)

ax.set_xticklabels([])
ax.set_yticklabels([])
# savefig('../figures/polar_ex.png',dpi=48)
plt.show()

image.png

# 3D Plots
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot)
ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.cm.hot)
ax.set_zlim(-2,2)

# savefig('../figures/plot3d_ex.png',dpi=48)
plt.show()

image.png

# Text
import numpy as np
import matplotlib.pyplot as plt

eqs = []
eqs.append((r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$"))
eqs.append((r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} = -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$"))
eqs.append((r"$\int_{-\infty}^\infty e^{-x^2}dx=\sqrt{\pi}$"))
eqs.append((r"$E = mc^2 = \sqrt{{m_0}^2c^4 + p^2c^2}$"))
eqs.append((r"$F_G = G\frac{m_1m_2}{r^2}$"))


plt.axes([0.025,0.025,0.95,0.95])

for i in range(24):
    index = np.random.randint(0,len(eqs))
    eq = eqs[index]
    size = np.random.uniform(12,32)
    x,y = np.random.uniform(0,1,2)
    alpha = np.random.uniform(0.25,.75)
    plt.text(x, y, eq, ha='center', va='center', color="#11557c", alpha=alpha,
             transform=plt.gca().transAxes, fontsize=size, clip_on=True)

plt.xticks([]), plt.yticks([])
# savefig('../figures/text_ex.png',dpi=48)
plt.show()

image.png

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容