RNA-seq入门实战(九):PPI蛋白互作网络构建(上)——STRING数据库的使用

本节概览:
1.STRING数据库基本介绍
2.STRING R语言版——STRINGdb的使用:
①STRINGdb数据库导入 ②获取STRING_id ③PPI绘制
④clustering分簇 ⑤富集分析 ⑥获取蛋白互作信息
3.STRING 网页版的简单使用:
文件上传、各选项设置、数据导出


在得到我们感兴趣的基因集后,除了对其进行GO等富集分析查看与什么重要的生物学通路相关,还可以进行PPI蛋白互作网络(PPI, Protein-Protein Interaction Networks)的构建,查看这些基因之间的联系,进而锁定关键基因。
关于关键基因、hub基因,这篇文章说得很详细:关键基因和hub基因(生物网络角度)
构建PPI网络一般需要使用string数据库获取蛋白互作信息以及进行互作网络的可视化。下面探究一下STRING数据库的网页和R语言版的使用:
其他数据库的使用:
跟着Cell学作图|9.PPI分析(GeNets数据库)


1. STRING 数据库基本介绍

官网: STRING: functional protein association networks (string-db.org)
R语言版本:Bioconductor - STRINGdb

  • STRING是一个已知和预测的蛋白质-蛋白质相互作用的数据库。
    相互作用包括直接(物理)和间接(功能)联系;它们源于计算预测、生物之间的知识转移,以及其他(主要)数据库聚合的交互作用。
    STRING中的相互作用有五个主要来源:基因组预测、高通量实验、(保守的)共表达实验、自动化文本挖掘、数据库相关知识。
    STRING数据库目前涵盖了来自5′090个物种的24′584′628个蛋白质。
    image.png

2. STRING的R语言版——STRINGdb的使用

STRINGdb说明书:STRINGdb.pdf (bioconductor.org)或使用命令vignette("STRINGdb")在本地查看说明书。查看STRINGdb的函数帮助文档比较特殊,要用STRINGdb$help("get_graph")的形式。
使用STRINGdb时,参数species代表NCBI Taxonomy物种编码,可在此查询:https://cn.string-db.org/cgi/input.pl?input_page_active_form=organisms,其中人为9606,小鼠为10090 。

① STRINGdb数据库导入

  • 首先选择载入的STRINGdb数据(数据库版本、物种、蛋白互作得分)和之前基因差异分析得到的DEG。
    STRINGdb$new设置使用最新的11.5版本数据库,物种选择为小鼠(人9606,小鼠10090 ),蛋白互作得分阈值选择700(默认400, 低150,高700,极高900,越高可信度越强)。
    DEG结果中选取前100显著差异基因用于后续分析,并将其基因名保存为gene_diff100.txt文件用于后续STRING网页版的使用(特别注意write.table要设quote = F,让字符不要带引号 ,否则后续上传 STRING容易识别错误)
rm(list = ls()) 
options(stringsAsFactors = F)
library(tidyverse)  # ggplot2 stringer dplyr tidyr readr purrr  tibble forcats
library(STRINGdb) #BiocManager::install(c("STRINGdb","igraph"),ask = F,update = F)
library(igraph)

setwd("C:/Users/Lenovo/Desktop/test")
load(file = './3.DEG/test_DEG_results.Rdata')
dir.create("7.PPI")
setwd("7.PPI")
######################### 选择STRINGdb类型 #########################
string_db <- STRINGdb$new( version="11.5", #数据库版本。截止2022.5.24最新为11.5
                           species=10090,   #人9606,小鼠10090 
                           score_threshold=700, #蛋白互作的得分 默认400, 低150,高700,极高900
                           input_directory="") #可自己导入数据
########################## 获取DEG结果 ############################
##  筛选条件设置 
log2FC_cutoff = log2(2)
pvalue_cutoff = 0.05
padj_cutoff = 0.05
## 选择DEG
need_deg <- DEG_DESeq2[,c(2,5,6)] ; head(need_deg) 
colnames(need_deg) <- c('log2FC','pvalue','padj'); head(need_deg)
need_deg$gene <- rownames(need_deg); head(need_deg)      #gene symbol或ENTREZID都可
if(T){  
  gene_up=need_deg[with(need_deg,log2FC>log2FC_cutoff & pvalue<pvalue_cutoff & padj<padj_cutoff),]
  gene_down=need_deg[with(need_deg,log2FC < -log2FC_cutoff & pvalue<pvalue_cutoff & padj<padj_cutoff),]
  gene_diff=need_deg[with(need_deg,abs(log2FC)>log2FC_cutoff & pvalue<pvalue_cutoff & padj<padj_cutoff),]
}
dim(gene_up);dim(gene_down);dim(gene_diff)
dat <- gene_diff[1:100] ##这里选取前100显著基因用于后续分析
write.table(rownames(dat),'gene_diff100.txt',row.names = F,col.names = F,quote = F) #字符不要带引号 

② 获取STRING_id

  • 使用map获取基因名对应的STRING_id用于绘制string_PPI , 基因名为gene symbol或ENTREZID都可以直接对应获取STRING_id
dat_map <- string_db$map(my_data_frame=dat, 
                         my_data_frame_id_col_names="gene", #使用gene symbol或ENTREZID都可
                         removeUnmappedRows = TRUE )
hits <- dat_map$STRING_id 

③ PPI蛋白互作网络绘制

  • 完成以上步骤后使用plot_network即可绘制PPI图,还可以给PPI添加上下调信息(上调标记为红色光环,下调标记为绿色光环)
## PPI
png("string_PPI.png",units="in",width = 10,height = 10, res=400)
string_db$plot_network(hits)
dev.off()
## PPI_halo  #给PPI添加上下调信息
# filter by p-value and add a color column(i.e.green for down and red for up genes)
dat_map_color <- string_db$add_diff_exp_color(subset(dat_map, pvalue<0.01),
                                                  logFcColStr="log2FC" )
payload_id <- string_db$post_payload(dat_map_color$STRING_id,
                                     colors=dat_map_color$color)
png("string_PPI_halo.png",units="in",width = 10,height = 10, res=400)
string_db$plot_network(hits, payload_id=payload_id )
dev.off()
string_PPI.png

string_PPI_halo.png

④ clustering分簇

  • STRINGdb还能调用iGraph进行PPI的clustering分簇,get_clusters有这些算法可以选择: fastgreedy(默认), walktrap, edge.betweenness,以下代码演示了用 fastgreedy方法对PPI进行clustering,并展示前6个cluster
## iGraph clustering 互作网络分簇
#algorithm: fastgreedy(默认), walktrap, edge.betweenness
clustersList <- string_db$get_clusters(string_ids = hits ,
                                       algorithm  = "fastgreedy" ) 
# plot first 6 clusters.
png("string_PPI_iGraph_cluster.png",units="in",width = 15,height = 10,res=400)
par(mfrow=c(2,3))
for(i in 1:6){
 string_db$plot_network(clustersList[[i]])
}
dev.off()
string_PPI_iGraph_cluster.png

⑤ 富集分析

  • 除了以上功能,STRINGdb还能对基因集进行富集分析,参数category指定要使用的数据库(默认为All),其中Process, Component, Function分别对应GO的BP,CC,MF三个子集
#category: All, Process, Component, Function, Keyword, KEGG, RCTM, Pfam, SMART, InterPro
enrichment <- string_db$get_enrichment(string_ids = hits,
                                       category   = "Process" ) 
write.csv(enrichment,"enrichment_GO_BP.csv")
enrichment部分结果

⑥ 获取蛋白互作信息

  • 最后,可使用get_interactions获取蛋白互作信息,再转换stringID为 gene symbol,去除重复(每个相互作用会出现两次),之后导出string_link.csv文件,可在Cytoscape中进一步进行多种可视化操作
############################## 获取蛋白互作信息用于后续可视化 ###############3
dat_link <- string_db$get_interactions(hits)
# 转换stringID为 gene symbol
dat_link$from <- dat_map[match(dat_link$from,dat_map$STRING_id),'gene']
dat_link$to <- dat_map[match(dat_link$to,dat_map$STRING_id),'gene']  
colnames(dat_link) <- c('node1','node2','combined_score')
# 去除重复
dat_link <- dat_link %>% distinct(node1, node2, .keep_all = T)

write.csv(dat_link,'string_link.csv',row.names = F,quote = F)

3. STRING网页版的简单使用

  • 登录STRING网页STRING: functional protein association networks
    Mutiple proteins中上传我们前面得到的gene_diff200.txt,或者直接将基因名粘贴在第一个框中,再选择物种organism为Mus musculus。

  • 点击SEARCH,会进行匹配string中对应的蛋白,大致预览一下确认正确后,点击CONTINUE即可得PPI图像

SEARCH后界面

分析界面
  • 在分析界面的Vierws选项下可以选择多种展现方式,Legend选项下展现图像各标记的含义;
    Vierws选项

    Legend选项
  • Settings选项下有多项参数可以选择,例如minimum required interaction score可以选择高可信度0.700(默认为0.400),选择完成后点击UPDATE即可更新图像。
    可以看到调整可信度为0.700后与之前在R中所得图像是一致的
Settings选项

调整参数后所得图像
  • Analysis选项下有PPI网络的相关节点信息与GO、KEGG等富集分析结果

    Analysis选项

  • Cluster选项下还可以对PPI网络进行分簇,选择分簇方法(如:kmeans clustering)和分簇数量(如:4)后点击APPLY即可,不同分簇会用不同颜色标注出来

    Cluster选项

    Cluster图像

  • Export选项下进行数据导出,一般选择下载高分辨率的PNG图片与蛋白互作关系TSV文件(下图黄色标记处),TSV文件用于后续在Cytoscape中进一步可视化PPI网络

    Export选项


参考资料
STRINGdb.pdf (bioconductor.org)
用R的bioconductor里面的stringDB包来做PPI分析 | 生信菜鸟团 (bio-info-trainee.com)


RNA-seq实战系列文章:
RNA-seq入门实战(零):RNA-seq流程前的准备——Linux与R的环境创建
RNA-seq入门实战(一):上游数据下载、格式转化和质控清洗
RNA-seq入门实战(二):上游数据的比对计数——Hisat2+ featureCounts 与 Salmon
RNA-seq入门实战(三):从featureCounts与Salmon输出文件获取counts矩阵
RNA-seq入门实战(四):差异分析前的准备——数据检查
RNA-seq入门实战(五):差异分析——DESeq2 edgeR limma的使用与比较
RNA-seq入门实战(六):GO、KEGG富集分析与enrichplot超全可视化攻略
RNA-seq入门实战(七):GSEA——基因集富集分析
RNA-seq入门实战(八):GSVA——基因集变异分析
RNA-seq入门实战(九):PPI蛋白互作网络构建(上)——STRING数据库的使用
RNA-seq入门实战(十):PPI蛋白互作网络构建(下)——Cytoscape软件的使用
RNA-seq入门实战(十一):WGCNA加权基因共表达网络分析——关联基因模块与表型

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容