过拟合:所选模型的复杂度比真模型更高;学习时选择的模型所包含的参数过多,对已经数据预测得很好,但是对未知数据预测得很差的现象.
过拟合一般特点:高方差,低偏差;
导致过拟合原因:训练数据不够,模型进行过度训练(overtraining)等
如何避免过拟合:
1) Early stopping (适当的stopping criterion): Early stopping便是一种迭代次数截断的方法来防止过拟合的方法,即在模型对训练数据集迭代收敛之前停止迭代来防止过拟合
2) 数据集扩增 : 数据机扩增即需要得到更多的符合要求的数据,即和已有的数据是独立同分布的,或者近似独立同分布的。一般方法有:从数据源头采集更多数据,复制原有数据并加上随机噪声,重采样,根据当前数据集估计数据分布参数,使用该分布产生更多数据等
3)正则化方法:一般有L1正则与L2正则等
4)Dropout:正则是通过在代价函数后面加上正则项来防止模型过拟合的。而在神经网络中,有一种方法是通过修改神经网络本身结构来实现的,其名为Dropout