神经网络学习率(learning rate)的衰减

一、学习率衰减的概念和必要性

学习率过大,在算法优化的前期会加速学习,使得模型更容易接近局部或全局最优解。但是在后期会有较大波动,甚至出现损失函数的值围绕最小值徘徊,波动很大,始终难以达到最优,如下图蓝色曲线所示。所以引入学习率衰减的概念,直白点说,就是在模型训练初期,会使用较大的学习率进行模型优化,随着迭代次数增加,学习率会逐渐进行减小,保证模型在训练后期不会有太大的波动,从而更加接近最优解,如下图中上面一条绿色曲线所示。

当学习率过大,以J(X)=X^2为例,学习率始终为1,梯度下降算法的运行过程:

image

可以看到无论进行多少轮迭代,参数始终在5和-5之间摇摆,而不是收敛到一个极小值。

二、学习率衰减的类型

学习率衰减的类型有很多种,大致可以分为两类:

一是通过人为经验进行设定,如到达多少轮后,设定具体的学习率为多少;二是随着迭代轮数的增加学习率自动发生衰减,这类有比较常用的指数型衰退,具体算法如下图

其中decayed_learning_rate为每一轮优化时使用的学习率,learning_rate为事先设定的初始学习率,decay_rate为衰减系数,decay_steps为衰减速度。

在tensorflow中指数型衰减通过调用tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)实现。这里介绍一下decay_steps,若decay_steps=100,即表示100轮迭代后进行一次衰减,staircase=True时,global_step/decay_steps会被转化为整数,这使得学习率呈阶梯型下降(如下图黑色),若staircase=False,下图灰色为连续型衰减学习率。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容

  • 在模型训练DL模型时,随着模型的epoch迭代,往往会推荐逐渐减小learning rate,在一些实验中也证明确...
    EdwardLee阅读 14,473评论 0 4
  • 今天记录一下我花了一些时间才理解的一个概念 —— 指数衰减法(exponential decay) 为什么要使用指...
    LiuHDme阅读 7,160评论 0 2
  • QQ上遇到一个十几年未见的老朋友打招呼,于是很开心的聊起天来。后面说到加下微信,看看朋友现在的照片。 加了微信后,...
    亦为清心阅读 156评论 4 4
  • 以后啊 找个会画画的或者学音乐的 手指长长的 他作画我题词又或者 他吉他我钢琴 日子舒服的时候 烘烤一点曲奇蛋糕 ...
    爱喝酸奶的狗子阅读 215评论 0 0
  • 今日份的淘宝心得。 以前的无印良品是去标产品,现在它是标了,在中国还比原产国日本翻了好几倍身价,且购买者络绎不绝,...
    李包恩阅读 299评论 0 0