Elasticsearch之排序与相关性

排序

为了按照相关性来排序,需要将相关性表示为一个数值。在 Elasticsearch 中, 相关性得分 由一个浮点数进行表示,并在搜索结果中通过 _score 参数返回, 默认排序是 _score 降序。

有时,相关性评分对你来说并没有意义。例如,下面的查询返回所有 user_id 字段包含 1 的结果:

GET /_search
{
    "query" : {
        "bool" : {
            "filter" : {
                "term" : {
                    "user_id" : 1
                }
            }
        }
    }
}

这里没有一个有意义的分数:因为我们使用的是 filter (过滤),这表明我们只希望获取匹配 user_id: 1 的文档,并没有试图确定这些文档的相关性。 实际上文档将按照随机顺序返回,并且每个文档都会评为零分。

  • 按照字段的值排序
    在这个案例中,通过时间来对 tweets 进行排序是有意义的,最新的 tweets 排在最前。 我们可以使用 sort 参数进行实现:
GET /_search
{
    "query" : {
        "bool" : {
            "filter" : { "term" : { "user_id" : 1 }}
        }
    },
    "sort": { "date": { "order": "desc" }}
}

你会注意到结果中的两个不同点:

"hits" : {
    "total" :           6,
    "max_score" :       null, 
    "hits" : [ {
        "_index" :      "us",
        "_type" :       "tweet",
        "_id" :         "14",
        "_score" :      null, 
        "_source" :     {
             "date":    "2014-09-24",
             ...
        },
        "sort" :        [ 1411516800000 ] 
    },
    ...
}
  1. _score 不被计算, 因为它并没有用于排序。
  2. date 字段的值表示为自 epoch (January 1, 1970 00:00:00 UTC)以来的毫秒数,通过 sort 字段的值进行返回。
  3. 计算 _score 的花销巨大,通常仅用于排序; 我们并不根据相关性排序,所以记录 _score 是没有意义的。如果无论如何你都要计算 _score , 你可以将 track_scores 参数设置为 true 。
  • 多级排序

    假定我们想要结合使用 date 和 _score 进行查询,并且匹配的结果首先按照日期排序,然后按照相关性排序:

GET /_search
{
    "query" : {
        "bool" : {
            "must":   { "match": { "tweet": "manage text search" }},
            "filter" : { "term" : { "user_id" : 2 }}
        }
    },
    "sort": [
        { "date":   { "order": "desc" }},
        { "_score": { "order": "desc" }}
    ]
}
  • 字段多值排序

    一种情形是字段有多个值的排序, 需要记住这些值并没有固有的顺序;一个多值的字段仅仅是多个值的包装,这时应该选择哪个进行排序呢?

    对于数字或日期,你可以将多值字段减为单值,这可以通过使用 min 、 max 、 avg 或是 sum 排序模式 。 例如你可以按照每个 date 字段中的最早日期进行排序,通过以下方法:

"sort": {
    "dates": {
        "order": "asc",
        "mode":  "min"
    }
}

字段排序与多字段

被解析的字符串字段也是多值字段, 但是很少会按照你想要的方式进行排序。如果你想分析一个字符串,如 fine old art , 这包含 3 项。我们很可能想要按第一项的字母排序,然后按第二项的字母排序,诸如此类,但是 Elasticsearch 在排序过程中没有这样的信息。

为了以字符串字段进行排序,这个字段应仅包含一项: 整个 not_analyzed 字符串。 但是我们仍需要 analyzed 字段,这样才能以全文进行查询

一个简单的方法是用两种方式对同一个字符串进行索引,这将在文档中包括两个字段: analyzed 用于搜索, not_analyzed 用于排序

但是保存相同的字符串两次在 _source 字段是浪费空间的。 我们真正想要做的是传递一个 单字段 但是却用两种方式索引它。所有的 _core_field 类型 (strings, numbers, Booleans, dates) 接收一个 fields 参数

该参数允许你转化一个简单的映射如:

"tweet": {
    "type":     "string",
    "analyzer": "english"
}

为一个多字段映射如

"tweet": { 
    "type":     "string",
    "analyzer": "english",
    "fields": {
        "raw": { 
            "type":  "string",
            "index": "not_analyzed"
        }
    }
}

什么是相关性

Elasticsearch 的相似度算法 被定义为检索词频率/反向文档频率, TF/IDF 。

参考资料

Elasticsearch: 权威指南

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容