PyTorch定义自己的Dataset

1 什么是Datasets:

  在输入流水线中,我们看到准备数据的代码是这么写的data = datasets.CIFAR10("./data/", transform=transform, train=True, download=True)。datasets.CIFAR10就是一个Datasets子类,data是这个类的一个实例。


2 为什么要定义Datasets:

  PyTorch提供了一个工具函数torch.utils.data.DataLoader。通过这个类,我们在准备mini-batch的时候可以多线程并行处理,这样可以加快准备数据的速度。Datasets就是构建这个类的实例的参数之一。


3 如何自定义Datasets

  datasets这是一个pytorch定义的dataset的源码集合。
  下面是一个自定义Datasets的框架:

class CustomDataset(data.Dataset):#需要继承data.Dataset
    def __init__(self):
        # TODO
        # 1. Initialize file path or list of file names.
        pass
    def __getitem__(self, index):
        # TODO
        # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
        # 2. Preprocess the data (e.g. torchvision.Transform).
        # 3. Return a data pair (e.g. image and label).
        #这里需要注意的是,第一步:read one data,是一个data
        pass
    def __len__(self):
        # You should change 0 to the total size of your dataset.
        return 0

  下面看一下官方MNIST的例子:

class MNIST(data.Dataset):
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.
    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
    urls = [
        'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
    ]
    raw_folder = 'raw'
    processed_folder = 'processed'
    training_file = 'training.pt'
    test_file = 'test.pt'
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
    class_to_idx = {_class: i for i, _class in enumerate(classes)}

    @property
    def targets(self):
        if self.train:
            return self.train_labels
        else:
            return self.test_labels

    def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
        self.root = os.path.expanduser(root)
        self.transform = transform
        self.target_transform = target_transform
        self.train = train  # training set or test set

        if download:
            self.download()

        if not self._check_exists():
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')

        if self.train:
            self.train_data, self.train_labels = torch.load(
                os.path.join(self.root, self.processed_folder, self.training_file))
        else:
            self.test_data, self.test_labels = torch.load(
                os.path.join(self.root, self.processed_folder, self.test_file))

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (image, target) where target is index of the target class.
        """
        if self.train:
            img, target = self.train_data[index], self.train_labels[index]
        else:
            img, target = self.test_data[index], self.test_labels[index]

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        if self.train:
            return len(self.train_data)
        else:
            return len(self.test_data)

    def _check_exists(self):
        return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \
            os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file))

    def download(self):
        """Download the MNIST data if it doesn't exist in processed_folder already."""
        from six.moves import urllib
        import gzip

        if self._check_exists():
            return

        # download files
        try:
            os.makedirs(os.path.join(self.root, self.raw_folder))
            os.makedirs(os.path.join(self.root, self.processed_folder))
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        for url in self.urls:
            print('Downloading ' + url)
            data = urllib.request.urlopen(url)
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.root, self.raw_folder, filename)
            with open(file_path, 'wb') as f:
                f.write(data.read())
            with open(file_path.replace('.gz', ''), 'wb') as out_f, \
                    gzip.GzipFile(file_path) as zip_f:
                out_f.write(zip_f.read())
            os.unlink(file_path)

        # process and save as torch files
        print('Processing...')

        training_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte'))
        )
        test_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte'))
        )
        with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:
            torch.save(training_set, f)
        with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:
            torch.save(test_set, f)

        print('Done!')

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        tmp = 'train' if self.train is True else 'test'
        fmt_str += '    Split: {}\n'.format(tmp)
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str
    








Reference:

  1. pytorch学习笔记(六):自定义Datasets
  2. pytorch定义的dataset的源码集合
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容

  • 我喜欢大海 大海使我平静 我希望你也喜欢大海 因为我一直以鲸鱼自居 不苛求 你与我兴趣相同 但愿他人眼中的怪异 是...
    俏奇阅读 104评论 0 0
  • 文/孙莲英 前天同学打来电话,说趁着几个远方的同学回来,我们要聚一聚,附近的同学都会赶来。...
    完美的补丁阅读 604评论 0 2
  • 我们都知道,游戏让我们为之疯狂和痴迷,相信每个人都有过玩游戏的经历,也体验过其中的无穷乐趣。 很多人在学习或者工作...
    Mr波波阅读 2,274评论 0 4
  • 作者:陌上花开 昂头瞭望天蔚蓝,俯首观看翠一片。风吹叶片抖枝俏,春来盆栽更妖娆
    克塞尔_78e5阅读 130评论 0 0
  • 每个女孩的心底都藏着一个浪漫的梦,是深情凝望的眼神,是掩盖不住的笑容,是霸道温暖的拥抱,是真心温柔的关怀,是怦然心...
    思美1314阅读 535评论 0 3